Investigating the mechanism by which Tacr1 Neurons Regulate Neurovascular Coupling
研究 Tacr1 神经元调节神经血管耦合的机制
基本信息
- 批准号:10678077
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:BrainBrain imagingCalciumCerebrovascular CirculationCerebrovascular DisordersComplexDevelopmentDiseaseElectroencephalographyEnsureEnzymesFellowshipFrequenciesFunctional Magnetic Resonance ImagingFutureG-Protein-Coupled ReceptorsGoalsHealthHumanImageKnowledgeLaser-Doppler FlowmetryLigandsLinkMeasuresMediatingMediatorMentorsMicroscopyMolecularMusNeuronsNeuropeptidesNitric OxideNitric Oxide Synthase Type INitric Oxide Synthetase InhibitorNutrientOxygenParvalbuminsPathway interactionsPerfusionProcessProductionResearch PersonnelResearch TrainingRiskScientistSignal TransductionSleepSomatosensory CortexSourceStrokeSubstance PTAC1 geneTACR1 geneTestingTherapeuticTissuesTrainingTranslatingVasodilationVasodilator AgentsViralWakefulnessantagonistawakeblood oxygen level dependentbrain healthbrain tissuecerebrovascularexperimental studyhemodynamicsimaging studyin vivoinhibitory neuronleadership developmentnervous system disorderneuralneurovascularneurovascular couplingneurovascular unitoptogeneticsresponsetraining opportunitytwo-photon
项目摘要
PROJECT SUMMARY/ABSTRACT
Neurovascular coupling (NVC) is a mechanism that translates neural activity into either slow or fast
hemodynamic responses. This mechanism is critical for blood oxygen level dependent (BOLD) functional
magnetic resonance imaging (fMRI) studies, and for maintaining healthy brain tissue. Also, disruptions to NVC
have been linked to an increased risk of cerebrovascular disorders, such as stroke. Despite the importance NVC
has in ensuring a functional brain, the exact process of this complex mechanism is poorly understood. Different
mediators responsible for the hemodynamic responses have been proposed. One of these proposed mediators
is nitric oxide (NO), a strong vasodilator. NO is catalyzed by the enzyme neuronal nitric oxide synthase (nNOS)
in specific neurons. Our lab has identified a subset of cortical inhibitory neurons that co-express nNOS and
Tachykinin Receptor 1 (TACR1), also known as substance P receptor. These Tacr1 neurons have been
observed to be in proximity with the neurovascular unit. Moreover, optogenetic stimulation of Tacr1 neurons
results in increased cerebral blood flow (CBF). Based on our findings, Tacr1 neurons mediate NVC. Even though
Tacr1 neurons express nNOS, whether NO is responsible for the observed changes in CBF during optogenetic
stimulation is unknown. Furthermore, no studies have investigated the cellular inputs that activate Tacr1 neurons.
Previous studies suggest that Tacr1 neurons are depolarized by substance P (SP), but where the source of SP
is coming from is unknown. One possibility is parvalbumin (PV) neurons, which are known to release SP.
Additionally, PV neurons are known to produce gamma-band oscillations, which are strongly correlated to the
BOLD signal . PV neurons may be providing a source of SP for Tacr1 neurons
during high gamma-band activity. As such, Tacr1 neuron activity may increase during high gamma-band activity
causing the release of NO. I propose to determine whether
My proposal comprises of the following aims: Aim 1: Determine the
molecular mechanism through which Tacr1 neuron activity increases cerebral blood flow (CBF). Aim 2: Examine
the cellular inputs that activate Tacr1 neurons. Aim 3: Characterize the endogenous activity of Tacr1 neurons
across brain states. Together, these experiments may reveal the circuitry underlying NVC and the association
with state-dependent changes. This knowledge is fundamental to our understanding of BOLD signal and
cerebrovascular disorders. Finally, in this proposal, I outlined a combination of rigorous mentored research
training, coursework, and professional and leadership development activities that along with this fellowship
training period will be instrumental in my development as an aspiring independent investigator.
(an indirect measure of NVC)
SP causes a state-dependent increase in Tacr1
neuron activity, resulting in vasodilation.
项目摘要/摘要
神经血管耦合(NVC)是一种将神经活动转化为慢或快速的机制
血液动力学反应。该机制对于血氧水平依赖(粗体)功能至关重要
磁共振成像(fMRI)研究,用于维持健康的脑组织。此外,对NVC的破坏
与脑血管疾病(例如中风)的风险增加有关。尽管很重要NVC
在确保功能性的大脑时,这种复杂机制的确切过程知之甚少。不同的
已经提出了负责血液动力学反应的介质。这些提议的调解员之一
是一氧化氮(NO),一种强的血管扩张剂。 NO是由酶神经元一氧化氮合酶(NNOS)催化的
在特定的神经元中。我们的实验室已经确定了共表达nNO和
速素受体1(TACR1),也称为物质P受体。这些TACR1神经元已经
观察到与神经血管单元相近。此外,TACR1神经元的光遗传学刺激
导致脑血流增加(CBF)。根据我们的发现,TACR1神经元介导了NVC。虽然
TACR1神经元表达NNO,是否造成光遗传学期间观察到的CBF的变化负责
刺激是未知的。此外,没有研究研究了激活TACR1神经元的细胞输入。
先前的研究表明,TACR1神经元被P(SP)去极化,但SP的来源
来自未知。一种可能性是白蛋白(PV)神经元,已知会释放Sp。
另外,已知PV神经元会产生γ波段振荡,这与
粗体信号。 PV神经元可能为TACR1神经元提供SP来源
在高γ波段活动中。因此,在高γ波段活性期间,TACR1神经元活性可能会增加
导致释放否。我建议确定是否
我的建议包括以下目的:目标1:确定
TACR1神经元活性增加脑血流(CBF)的分子机制。目标2:检查
激活TACR1神经元的细胞输入。 AIM 3:表征TACR1神经元的内源性活性
跨大脑状态。这些实验共同揭示了NVC的基础电路和关联
与国家有关的变化。这些知识是我们对大胆信号和的理解至关重要的
脑血管疾病。最后,在此提案中,我概述了严格的指导研究的组合
培训,课程工作以及专业和领导力发展活动以及该奖学金
培训期将有助于我作为有抱负的独立研究者的发展。
(NVC的间接度量)
SP会导致状态依赖性TACR1增加
神经元活性,导致血管舒张。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Fernanda Juarez Anaya其他文献
Maria Fernanda Juarez Anaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
超高场磁共振大脑海马多参数定量成像及其亚区特征研究
- 批准号:82302177
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态磁共振成像对脑动静脉畸形患者的语言功能右侧大脑半球重塑机制研究
- 批准号:82371293
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
磁共振定量磁化率成像新方法及其对早产儿大脑发育评估价值的研究
- 批准号:62301501
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
猕猴大脑高时空信噪比功能成像关键电磁理论与方法研究
- 批准号:52277232
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
灵长类大脑皮层自发活动的光学成像研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
In vivo calcium imaging during appetitive learning in HIV Tat transgenic mice exposed to cannabis
暴露于大麻的 HIV Tat 转基因小鼠食欲学习过程中的体内钙成像
- 批准号:
10696442 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Noradrenergic gating of astrocyte calcium-mediated homeostasis in vivo
星形胶质细胞钙介导体内稳态的去甲肾上腺素能门控
- 批准号:
10679269 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: