Data-Driven Discovery of Heterogeneous Treatment Effects of Statin Use on Dementia Risk
他汀类药物使用对痴呆风险的异质治疗效果的数据驱动发现
基本信息
- 批准号:10678219
- 负责人:
- 金额:$ 4.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAgingAlgorithmsAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmericanAwardBehavioralBiologicalBiological MarkersCharacteristicsClinicalClinical TrialsCognitive agingConsensusDataData SetDementiaDiagnosisDiseaseEconomicsEffectivenessGeneticGoalsGrantHeterogeneityHyperlipidemiaImpaired cognitionIndividualInvestigationMachine LearningMentorshipMethodsMissionModificationNatureObservational StudyParticipantPharmaceutical PreparationsPoliciesPrevalencePreventionPrevention ResearchPrevention strategyProbabilityProspective cohortPsychometricsPublic HealthQualifyingRaceReproducibility of ResultsResearchResearch MethodologyResearch PersonnelResearch ProposalsResearch TrainingResourcesRisk ReductionSamplingSubgroupTestingTrainingTreesUnited Statesadvanced dementiaagedapolipoprotein E-4biobankcareercognitive functioncohortcomorbiditydementia riskdesigneffective therapyfollow-upforestimprovedinnovationinterestlipid metabolismmachine learning algorithmmachine learning methodnoveloptimal treatmentspatient subsetsprecision medicinepreventrecruitregression treessexskillssocialsociodemographicsstudy populationtreatment effect
项目摘要
PROJECT SUMMARY (ABSTRACT)
Alzheimer’s Disease and Related Dementias (ADRD) currently affects more than 4 million Americans and over
50 million individuals worldwide. The identification of prevention strategies for dementia is critical, particularly
due to the lack of effective treatments. In parallel, there is growing consensus that lipid metabolism is a major
contributor to ADRD and may be an important strategy for risk reduction and prevention. Antihyperlipidemic
agents (i.e., statins) are widely used, yet evidence on the relationship between antihyperlipidemic agents (i.e.,
statins) and ADRD has been largely inconclusive. One possible explanation for the mixed findings is
heterogeneity in study populations and their characteristics. For example, the effectiveness of statins is
evidenced to vary by age, ApoE4 status, and pre-existing disease status.34-36 Accordingly, there is a growing
need to identify the factors (i.e., effect modifiers) which influence heterogeneities in the effect of statins on
dementia. The objective of this study is to triangulate evidence on the identification and estimation of
heterogeneous treatment effects by using three causal machine learning methods, specifically the honest
causal forest/policy tree, doubly robust adaptive LASSO, and Bayesian Adaptive Regression Trees (BART), to
identify novel effect modifiers and optimal subgroups for the effect of statins on dementia. While traditional
parametric regression approaches are designed to test a priori hypotheses regarding effect modification, such
approaches are not suitable for yielding novel hypotheses. The causal machine learning methods described in
this proposal fill this gap; not only do such approaches help identify novel effect modifiers, but they can also
facilitate the subsequent identification of optimal treatment rules across those modifiers. In this study, I propose
to use a cohort of 307,719 individuals from the UK Biobank data who were at least 55 when they were initially
recruited from 2006 to 2010. The analytical sample will be large, allowing me to rigorously investigate
heterogeneous treatment effects across different subgroups. Specifically, in Aim 1, I propose to estimate the
real-world average treatment effect (ATE) of statins on ADRD across the entire sample. I will then, in Aim 2,
apply three causal machine learning algorithms to identify novel effect modifiers and corresponding optimal
subgroups for the effect of statin use on ADRD risk. Finally, in Aim 3, I will quantify the reduction in ADRD
cases that would result from implementing each of the optimal treatment rules generated under Aim 2 and
compare them to the reduction in ADRD cases observed under Aim 1. This F31 proposal application will
support my dissertation research, as well as my interest in gaining training in causal machine learning, as well
as substantive training in dementia, cognitive aging, and its psychometric methods. Under the guidance of my
mentorship team, I look forward to advancing dementia prevention research while also pursuing my goal of
becoming an independent investigator in research methods on cognitive aging.
项目摘要(摘要)
阿尔茨海默氏病和相关痴呆症(ADRD)目前影响超过400万美国人及以上
全球5000万个人。鉴定痴呆症的预防策略至关重要,特别是
由于缺乏有效的治疗。同时,人们普遍认为脂质代谢是主要的
贡献ADRD,可能是降低风险和预防风险的重要策略。抗血脂血症
药物(即汀类药物)被广泛使用,但证据证明了抗血脂药物之间的关系(即
他汀类药物)和ADRD在很大程度上尚无定论。混合发现的一种可能解释是
研究人群及其特征的异质性。例如,他汀类药物的有效性是
根据年龄,APOE4状态和现有疾病状态的证明。34-36因此,有一个增长
需要确定影响他汀类药物对的异质性的因素(即效应修饰符)
失智。这项研究的目的是对鉴定和估计的三角审判证据
通过使用三种因果机学习方法,特别是诚实的治疗效果
因果森林/政策树,双重健壮的自适应拉索和贝叶斯自适应回归树(BART)
确定汀类药物对痴呆症的影响的新型效应修饰剂和最佳亚组。而传统
参数回归方法旨在检验有关效果修改的先验假设
方法不适合产生新的假设。所描述的因果机学习方法
该建议填补了这一空白;这种方法不仅有助于识别新颖的效应修饰符,而且还可以
促进随后在这些修饰符中识别最佳治疗规则。在这项研究中,我提出了
使用来自英国生物库数据的307,719个人的同伙,最初至少55岁
从2006年到2010年招募。分析样本将很大,使我可以严格调查
不同亚组的异质治疗效应。具体而言,在AIM 1中,我建议估算
汀类药物对整个样本的ADRD的现实世界平均治疗效果(ATE)。然后,我将在AIM 2中
应用三种因果机学习算法来识别新颖的效应修饰符和相应的最佳
他汀类药物使用对ADRD风险的影响。最后,在AIM 3中,我将量化ADRD的减少
实施AIM 2和AIM 2和
将它们与AIM 1观察到的ADRD案件的减少相比。此F31提案申请将
支持我的论文研究,以及我对获得因果机器学习培训的兴趣
作为痴呆症,认知衰老及其心理测量方法的实质训练。在我的指导下
属团团队,我期待着预防痴呆症的研究,同时也追求我的目标
成为认知衰老研究方法的独立研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neal Jawadekar其他文献
Neal Jawadekar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
- 批准号:31470998
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别: