Controlled release of RNA-targeting therapy to promote healing of diabetic ulcers
RNA靶向疗法的受控释放促进糖尿病溃疡愈合
基本信息
- 批准号:10677024
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAmputationAngiogenesis InhibitorsAngiogenic ProteinsAntibioticsBandageBiocompatible MaterialsBiologicalBiological AssayBlood VesselsChargeChronicClinicalCodeComplications of Diabetes MellitusCuesDepositionDermalDiabetes MellitusDiseaseDoseDrug Delivery SystemsEffectivenessElectrostaticsEndosomesEndothelial CellsEngineeringExcipientsGene ExpressionGenesHealth Care CostsHistologyHumanImpaired healingImpaired wound healingImpairmentIn VitroInflammationInflammatoryInvestigationIschemiaKineticsKnowledgeLeadMacrophage ActivationMalignant NeoplasmsMeasuresMediatingMedicareMesenteryMessenger RNAMicroRNAsModelingMolecularMolecular AnalysisMolecular WeightMusMyocardial InfarctionNatural regenerationNeuropathyNucleic AcidsNutrientOxygenPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhasePolymersProcessProcollagen-Proline DioxygenaseQuality of lifeRNARNA-targeting therapyRecurrenceRegulationResearchSignal PathwaySignaling MoleculeSmall Interfering RNASystemTNF geneTechniquesTherapeuticTimeTissuesTransfectionTranslatingTreatment EfficacyUlcerUntranslated RNAVaricose UlcerVascular Endothelial Growth FactorsWorkWound modelsangiogenesischronic ulcerchronic woundcontrolled releasecytokinedecubitus ulcerdiabetic ulcerdiabetic wound healingeffective therapyefficacy testinggene functionhealingimmune activationimprovedin vitro Assayin vivoinhibitorinsightlipid nanoparticlemortalitymortality risknon-healing woundsnucleasenucleic acid deliverynucleic acid-based therapeuticsoverexpressionperfusion imagingpreventresponseself assemblysynergismtargeted treatmenttissue regenerationtooluptakewoundwound carewound closurewound environmentwound healing
项目摘要
Project Summary
Non-healing ulcers are a common complication of diabetes, resulting in decreased quality of life, elevated rates
of amputation, increased risk of mortality, and high healthcare costs. Unfortunately, current treatments remain
outdated and inadequate. In diabetes, neuropathy and microvascular changes in dermal tissue lead to
dysregulated molecular cues, resulting in chronic inflammation and reduced angiogenesis that prevent wound
healing. Poor angiogenesis is particularly critical given the importance of vasculature in supplying oxygen,
nutrients, and systemic signaling molecules. Impairment of angiogenesis is in part driven by aberrant expression
of coding messenger RNAs (mRNAs) and non-coding microRNAs (miRNAs) at various time scales. Thus, one
promising approach to alter the course of diabetic ulcers is to directly target the expression of upregulated RNAs
in the non-healing state using nucleic acid RNA-targeting therapies; however, delivery challenges render nucleic
acid therapies clinically unfeasible. To address these delivery challenges, the Hammond Lab has developed and
demonstrated self-assembled electrostatic deposition of nucleic acids through the layer by layer (LbL) technique,
which leverages iterative adsorption of polyelectrolytes of alternating charge, to create conformal coatings on
wound bandages with tunable release kinetics. I propose to develop and investigate temporally controlled
release strategies to locally deliver RNA-targeting therapies that promote angiogenesis and healing of
diabetic ulcers. In Aim 1, I will formulate staged release RNA-targeting bandages to promote wound healing
since staged release of therapy for multiple targets will allow the bandages to address different phases of wound
healing. A proof-of-concept bandage will be developed to elute RNA-targeting therapy to stimulate angiogenesis
in both the inflammatory and proliferative wound healing phases, and it will be tested for efficacy in vitro and in
a murine in vivo diabetic ulcer model. In Aim 2, I will identify potential synergies of pro-angiogenic anti-miRs
(miRNA inhibitors), as inhibition of gene expression with anti-miRs enables regulation of many genes along
defined tissue-specific signaling pathways to enhance angiogenesis. Since it is also unknown how delivery timing
of these anti-miR combinations may impact efficacy, we will leverage controlled-release LbL bandages to
investigate this. Through this research, I will advance the delivery of nucleic acids with biomaterial systems and
the targeting of aberrantly expressed coding and non-coding RNAs to promote healing of diabetic wounds. This
work will lay the groundwork for expansion of this platform approach to other diseases of impaired tissue
regeneration where timing the delivery to the healing process is critical, such as venous ulcers, mesenteric
ischemia, and myocardial infarction.
项目摘要
非愈合溃疡是糖尿病的常见并发症,导致生活质量降低,速度升高
截肢,死亡风险增加以及高昂的医疗费用。不幸的是,当前的治疗仍然存在
过时和不足。在糖尿病中,真皮组织的神经病和微血管变化导致
分子提示失调,导致慢性炎症和血管生成减少,以防止伤口
康复。鉴于脉管系统在供应氧气中的重要性,较差的血管生成特别重要,
营养和全身信号分子。血管生成的损害部分由异常表达驱动
在各个时间尺度上编码的Messenger RNA(mRNA)和非编码microRNA(miRNA)。因此,一个
改变糖尿病性溃疡过程的有前途的方法是直接靶向上调的RNA
在非治疗状态下,使用核酸RNA靶向疗法;但是,交付挑战呈现核
酸治疗在临床上不可行。为了应对这些交付挑战,Hammond Lab已开发并
通过一层(LBL)技术显示了核酸对核酸的自组装静电沉积,
利用了交替电荷的聚电解质的迭代吸附,以在
可调释放动力学的伤口绷带。我建议开发和调查受时间控制的
释放局部提供促进RNA靶向疗法的策略,以促进血管生成和治愈
糖尿病性溃疡。在AIM 1中,我将制定分期释放RNA靶向绷带以促进伤口愈合
由于针对多个目标的上演治疗释放将使绷带可以解决伤口的不同阶段
康复。概念证明的绷带将开发用于洗脱靶向RNA的疗法以刺激血管生成
在炎症和增生性伤口愈合阶段,它将在体外和在
体内糖尿病性溃疡模型的鼠。在AIM 2中,我将确定促血管生成抗MIR的潜在协同作用
(miRNA抑制剂),因为用抗MIRS抑制基因表达可以调节许多基因
定义的组织特异性信号通路以增强血管生成。由于也未知交付时间
这些抗MIR组合可能会影响疗效,我们将利用受控释放的LBL绷带
调查这个。通过这项研究,我将通过生物材料系统和
异常表达的编码和非编码RNA的靶向促进糖尿病伤口的愈合。这
工作将为扩展这种平台方法扩展到其他受损组织的疾病奠定基础
在恢复过程中交付时的再生至关重要,例如静脉溃疡,肠系膜
缺血和心肌梗塞。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
pH-Responsive, Charge-Reversing Layer-by-Layer Nanoparticle Surfaces Enhance Biofilm Penetration and Eradication.
- DOI:10.1021/acsbiomaterials.3c00481
- 发表时间:2023-06
- 期刊:
- 影响因子:5.8
- 作者:Elad Deiss‐Yehiely;Gerardo Cárcamo-Oyarce;Adam G. Berger;K. Ribbeck;P. Hammond
- 通讯作者:Elad Deiss‐Yehiely;Gerardo Cárcamo-Oyarce;Adam G. Berger;K. Ribbeck;P. Hammond
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam G Berger其他文献
Adam G Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam G Berger', 18)}}的其他基金
Controlled release of RNA-targeting therapy to promote healing of diabetic ulcers
RNA靶向疗法的受控释放促进糖尿病溃疡愈合
- 批准号:
10313210 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
表面吸附活化导向的Ti基MOFs纳米片设计及光催化氧化HMF定向转化调控
- 批准号:22362012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于多元IRMOFs复合纳米纤维吸附体系的环保绝缘气体有害分解产物消除方法研究
- 批准号:52377156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高湿烟气NOx净化及资源化的吸附剂疏水机制研究
- 批准号:52370107
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
蛋白质在油水界面吸附的分子模拟研究
- 批准号:22378134
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
地表水溶解性有机质与功能化杯芳烃对磺胺类抗生素的竞争吸附机制
- 批准号:42301095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Studentship