Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
基本信息
- 批准号:10674481
- 负责人:
- 金额:$ 61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdministratorAdultAmericanBehavioralClientClinicClinicalClinical ResearchCodeCognitive TherapyCollaborationsCommunitiesCommunity PracticeComplexComputer softwareConsumptionCounselingDataDevelopmentDropoutEducational process of instructingEffectivenessEngineeringEvaluationFeedbackFocus GroupsFoundationsFutureGoalsHealth Insurance Portability and Accountability ActHealth TechnologyHealthcare SystemsHumanImplementation readinessInstitutionInterviewInvestmentsMachine LearningMajor Depressive DisorderMental HealthMental Health ServicesMental disordersMethodologyMethodsMonitorNational Institute of Mental HealthOutcomePatientsPerformancePersonsPhasePilot ProjectsPoliciesPractice GuidelinesProfessional PracticeProtocols documentationProviderPsychotherapyQualifyingRandomizedReadinessReportingResearchResourcesScienceSecureServicesSmall Business Technology Transfer ResearchSoftware ToolsSpeechStandardizationStrategic PlanningSupervisionSystemTechnologyTestingTimeTrainingTraining ProgramsTraining SupportTreatment outcomeUniversitiesVisionWorkaddictionartificial intelligence algorithmbehavioral healthcloud basedcloud platformcognitive enhancementcommercializationcommunity settingcostcost efficientdashboarddesigndigital tooldisabilityeffectiveness evaluationeffectiveness-implementation randomized trialeffectiveness/implementation hybridevidence baseimplementation scienceimprovedinnovationmotivational enhancement therapyphase II trialpractice settingprototypequality assurancescale upservice deliveryservices as usualsignal processingskillssoftware as a servicesoftware developmentsoftware systemsspeech processingsymptomatic improvementtechnology developmenttelehealththerapeutic developmenttoolusabilityuser centered designweb platform
项目摘要
Each year, millions of Americans receive evidence-based psychotherapies (EBPs) such as cognitive
behavioral therapy (CBT) for the treatment of mental and behavioral health problems. Yet, at present, there is
no scalable method for evaluating the quality of psychotherapy services. In research settings, human-based
behavioral coding methods are used, but these are time consuming, costly, and rarely used in real-world
clinical settings. Thus, EBP quality and effectiveness is unmeasured and unknown. The current, fast-track
STTR proposal will develop and evaluate an AI-based software system (LyssnCBT) that will automatically
estimate CBT fidelity from an audio recording of a CBT session. Importantly, the current work builds from
Lyssn’s previous, successful work in developing an automated system for evaluating motivational interviewing
(MI), and previous research showing that AI algorithms can accurately estimate CBT fidelity.
Lyssn.io, Inc., (“Lyssn”) is a start-up developing AI-based technologies to support training, supervision,
and quality assurance of evidence-based counseling. Our goal is to develop innovative health technology
solutions that are objective, scalable, and cost efficient. Lyssn offers a HIPAA-compliant, cloud-based platform
for secure recording, sharing, and reviewing of therapy sessions, which includes AI-generated metrics for MI.
The proposed LyssnCBT tool will build from and be integrated into this core platform. Lyssn is partnering with
Dr. Torrey Creed and the Penn Collaborative, which has a 14+ year track record of gold-standard CBT training
and supervision, including more than 100 community agencies with almost 900 providers. The expertise,
relationships, and amassed data -- more than 8,000 recorded sessions and more than 3,000 rated for CBT
fidelity -- form the clinical foundation for the current research.
Phase I will work from an existing AI-CBT prototype to develop LyssnCBT. Core activities include
user-centered design focus groups and interviews with community mental health (CMH) therapists,
supervisors, and administrators, which will inform the design and development of LyssnCBT. LyssnCBT will be
evaluated for usability and implementation readiness in a final stage of Phase I. Phase II will conduct a
field-based usability trial and a stepped-wedge, hybrid implementation-effectiveness randomized trial (N =
1,850 CMH clients) to evaluate the effectiveness of LyssnCBT to improve therapist CBT skills and client
outcomes, and to reduce client drop-out. Analyses will also examine the hypothesized mechanism of action
underlying LyssnCBT.
The research is strongly aligned with NIMH’s 2020 Strategic Plan and its emphasis on a computational
approach to scaling up treatment delivery and monitoring. Successful execution will provide automated,
scalable CBT fidelity feedback for the first time ever, supporting high-quality training, supervision, and quality
assurance, and providing a core technology foundation that could support a range of EBPs in the future.
每年,数百万美国人接受循证心理治疗 (EBP),例如认知疗法
然而,目前存在用于治疗精神和行为健康问题的行为疗法(CBT)。
在研究环境中,没有可扩展的方法来评估心理治疗服务的质量。
使用行为编码方法,但这些方法耗时、成本高,并且在现实世界中很少使用
因此,EBP 的质量和有效性目前是无法衡量和未知的。
STTR 提案将开发和评估基于人工智能的软件系统(LyssnCBT),该系统将自动
重要的是,当前的工作是基于 CBT 会话的录音来估计 CBT 保真度的。
Lyssn 之前在开发评估动机访谈的自动化系统方面取得了成功
(MI),之前的研究表明人工智能算法可以准确地估计 CBT 保真度。
Lyssn.io, Inc.(“Lyssn”)是一家初创公司,开发基于人工智能的技术,以支持培训、监督、
我们的目标是开发创新的健康技术。
Lyssn 提供客观、可扩展且经济高效的解决方案,提供符合 HIPAA 的基于云的平台。
用于安全记录、共享和审查治疗疗程,其中包括人工智能生成的 MI 指标。
拟议的 LyssnCBT 工具将从 Lyssn 合作的这个核心平台构建并集成到其中。
Torrey Creed 博士和 Penn Collaborative 拥有 14 年以上黄金标准 CBT 培训记录
和监督,包括 100 多个社区机构和近 900 个提供者。
关系和积累的数据——超过 8,000 个记录的会话和超过 3,000 个 CBT 评级
保真度——构成当前研究的临床基础。
第一阶段将从现有的 AI-CBT 原型开始开发 LyssnCBT 核心活动,包括。
以用户为中心的设计焦点小组和社区心理健康(CMH)治疗师的访谈,
监督者和管理员,这将为 LyssnCBT 的设计和开发提供信息。
在第一阶段的最后阶段评估可用性和准备实施情况。第二阶段将进行
基于现场的可用性试验和阶梯楔形、混合实施效果随机试验(N =
1,850 名 CMH 客户)评估 LyssnCBT 在提高治疗师 CBT 技能和客户方面的有效性
分析还将检查所探索的行动机制。
底层 LyssnCBT。
该研究与 NIMH 的 2020 年战略计划及其对计算的强调高度一致
扩大治疗提供和监测的方法的成功执行将提供自动化,
有史以来第一次可扩展的 CBT 保真度反馈,支持高质量的培训、监督和质量
保证,并提供可以支持未来一系列EBP的核心技术基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing the quality of cognitive behavioral therapy in community mental health through artificial intelligence generated fidelity feedback (Project AFFECT): a study protocol.
- DOI:10.1186/s12913-022-08519-9
- 发表时间:2022-09-20
- 期刊:
- 影响因子:2.8
- 作者:Creed, Torrey A.;Salama, Leah;Slevin, Roisin;Tanana, Michael;Imel, Zac;Narayanan, Shrikanth;Atkins, David C.
- 通讯作者:Atkins, David C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Charles Atkins其他文献
David Charles Atkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Charles Atkins', 18)}}的其他基金
Voice-based AI to scale evaluation of crisis counseling in 988 rollout
基于语音的人工智能可扩展 988 危机咨询评估
- 批准号:
10699048 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
- 批准号:
10324974 - 财政年份:2021
- 资助金额:
$ 61万 - 项目类别:
ClientBot: A conversational agent that supports skills practice and feedback for Motivational Interviewing for AUD
ClientBot:对话代理,支持 AUD 动机面试的技能练习和反馈
- 批准号:
10449463 - 财政年份:2020
- 资助金额:
$ 61万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
8863672 - 财政年份:2015
- 资助金额:
$ 61万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
9057931 - 财政年份:2015
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8318917 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Implementation of Technology-Based Evaluation of Motivational Interviewing
基于技术的动机访谈评估的实施
- 批准号:
9334680 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
7985604 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8516405 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8133994 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Integrating the Youth Nominated Support Team (YST) with CBT for Black Youth with Acute Suicide Risk
将青年提名支持团队 (YST) 与针对有急性自杀风险的黑人青年的 CBT 相结合
- 批准号:
10573542 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
Evaluating the Implementation and De-Implementation of Pandemic Era SNAP Expansion Policies on Diet and Health: A Mixed Methods Project
评估大流行时代 SNAP 饮食和健康扩展政策的实施和取消实施:混合方法项目
- 批准号:
10832272 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
The Impact of Alzheimer’s Disease and Related Dementias on Nursing Home Care and Quality for Persons with Serious Mental Illness
阿尔茨海默病和相关痴呆症对严重精神疾病患者的疗养院护理和质量的影响
- 批准号:
10803736 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
NATIVE RISE-Risk Identification for Suicide and Enhanced care for Native Americans
NATIVE RISE-自杀风险识别和加强对美洲原住民的护理
- 批准号:
10643067 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别: