Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
基本信息
- 批准号:10674003
- 负责人:
- 金额:$ 4.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffinityAneuploidyBindingBiological AssayBreastBreast Cancer CellCancer EtiologyCell divisionCellsChromosomal InstabilityChromosome SegregationChromosomesColorCompensationCongenital AbnormalityCrowdingCuesDevelopmentDrug resistanceEnsureEventFiberGrasshoppersHeartImageIndividualInheritedKinetochoresLaboratoriesMCF10A cellsMDA MB 231Malignant NeoplasmsMammalian CellMammalsMeasuresMicrotubule StabilizationMicrotubulesMitosisMitoticModelingMolecularMonitorNeedlesNormal CellOncogenicPatientsPhosphotransferasesPolymerasePositioning AttributeProteinsResolutionRoleSignal TransductionSisterSpermatocytesStructureTestingTherapeuticTimeTumor stageUp-RegulationWorkcancer cellcancer therapydaughter cellexperimental studyimprovedinsightlive cell imagingmutantnew therapeutic targetnovelnovel therapeuticsoverexpressionpreventprotein expressionreal-time imagesresponsesegregationsensortherapy developmenttooltumor
项目摘要
Project Summary/Abstract
Errors in chromosome segregation give rise to aneuploidy, a hallmark of cancer. Breakdown of mitotic fidelity
correlates with both tumor stage and patient drug resistance. Identifying mechanisms that prevent errors in
chromosome segregation, and determining how they go wrong in cancer, are essential to developing therapies
to either decrease or increase segregation error rates in cancer.
The kinetochore attaches chromosomes to spindle microtubules. It segregates chromosomes and
monitors their microtubule attachments, stabilizing correct attachments and destabilizing incorrect ones. We
now know nearly all mammalian kinetochore proteins, and many have dysregulated expression in cancer. How
does the kinetochore detect and correct attachment errors, and fail to do so in cancer? The idea that tension
from bi-orientation signals correct attachments is decades-old, originating in Nicklas' pioneering experiments in
grasshopper spermatocytes. Yet, how the kinetochore monitors tension and robustly integrates information
across its many bound microtubules to regulate attachment stability is not known. In large part, this is due to
challenges in applying tension on kinetochores inside cells, in quantitatively tuning kinetochore composition,
and in imaging short-lived error correction events in real-time. Our laboratory has recently overcome these
challenges, uniquely positioning us to answer these questions. Notably, two candidate kinetochore proteins
have been proposed for sensing tension, the kinase AurKB and microtubule polymerase chTOG, and the
expression of both is dysregulated in cancer, as is that of the main microtubule binder Hec1.
Here, we test defining hypotheses on how normal and cancer cells detect and correct mitotic errors,
combining high resolution 3D live-cell imaging, state-of-the-art physical perturbations, and molecular tools in
normal and breast cancer cells. In Aim 1, we test the hypothesis that AurKB and chTOG sense tension. We
use microneedles to directly apply force to kinetochore-microtubules, measure how attachment stability
responds, and assess how these proteins' dysregulated expression alters this response in cancer. In Aim 2, we
test models for whether microtubules respond independently or cooperatively to attachment cues such as
tension, and test the hypothesis that Hec1 overexpression in cancer cells leads to hyper-stable attachments
that may be more challenging to properly correct. We do so by quantitatively tuning kinetochore microtubule
binding capacity using mixed Hec1 mutants, and measuring microtubule attachment lifetime using photomarks.
In defining critical mechanisms for correcting mitotic errors, and how they are modified in cancer, we
expect to identify adapted mechanisms of error correction in cancer cells. For example, some cancer cells may
be deficient in error correction, leading to aneuploidy, or have improved error correction to compensate for
extra chromosomes. Mechanisms uniquely or preferentially employed in cancer would offer a new therapeutic
window.
项目摘要/摘要
染色体隔离的错误导致癌症的标志性异倍倍。有丝分裂保真度的崩溃
与肿瘤阶段和耐药性均相关。确定防止错误的机制
染色体隔离,并确定它们在癌症中的出问题,对于开发疗法至关重要
降低或增加癌症的隔离错误率。
动力学将染色体连接到纺锤微管上。它分离染色体和
监视其微管附件,稳定正确的附件并破坏不正确的附件。我们
现在知道几乎所有哺乳动物动力学蛋白,许多蛋白质在癌症中的表达失调。如何
动力学是否检测并纠正依恋误差,并且在癌症中未能做到?紧张的想法
从双向方向信号中,正确的附件已有数十年历史,起源于Nicklas的开创性实验
蚱hopper精子细胞。但是,动力学如何监视紧张和鲁棒的信息
在其许多结合的微管中以调节附着稳定性,尚不清楚。在很大程度上,这是由于
在细胞内部动力学上施加张力的挑战,在定量调整动力学组成中,
并实时成像短期误差校正事件。我们的实验室最近克服了这些
挑战,独特地定位我们以回答这些问题。值得注意的是,两个候选动力学蛋白
已经提出了用于感应张力,激酶Aurkb和微管聚合酶CHTOG,以及
两者的表达在癌症中和主要微管粘合剂HEC1的表达失调。
在这里,我们检验定义假设,说明正常和癌细胞如何检测和纠正有丝分裂错误,
结合高分辨率3D活细胞成像,最先进的物理扰动和分子工具
正常和乳腺癌细胞。在AIM 1中,我们检验了Aurkb和Chtog感觉张力的假设。我们
使用微针直接将力施加到动型微管上,测量固定稳定性
响应,并评估这些蛋白质失调的表达如何改变癌症的这种反应。在AIM 2中,我们
测试模型是微管是独立或合作对附件提示的响应的测试模型
张力,并检验以下假设:癌细胞中的HEC1过表达导致超稳的附着
正确纠正可能更具挑战性。我们通过定量调整动力学微管来做到这一点
使用混合Hec1突变体的结合能力,并使用光域测量微管附着寿命。
在定义纠正有丝分裂错误的关键机制以及如何在癌症中修饰它们时,我们
期望确定癌细胞中误差校正的适应机制。例如,某些癌细胞可能
缺乏误差校正,导致非整倍性或进行改进的误差校正以补偿
额外的染色体。独特或优先用在癌症中使用的机制将提供新的治疗性
窗户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Kaiulani Chong其他文献
Megan Kaiulani Chong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan Kaiulani Chong', 18)}}的其他基金
Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
- 批准号:
10313117 - 财政年份:2021
- 资助金额:
$ 4.31万 - 项目类别:
Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
- 批准号:
10447001 - 财政年份:2021
- 资助金额:
$ 4.31万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Dissecting the function of Nemp1, a nuclear envelope protein critical for mammalian fertility
剖析 Nemp1(一种对哺乳动物生育能力至关重要的核膜蛋白)的功能
- 批准号:
10586929 - 财政年份:2022
- 资助金额:
$ 4.31万 - 项目类别:
Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
- 批准号:
10313117 - 财政年份:2021
- 资助金额:
$ 4.31万 - 项目类别:
Error Correction in Mammalian Mitosis: Defining Physical Cues and Integration Mechanisms
哺乳动物有丝分裂中的错误纠正:定义物理线索和整合机制
- 批准号:
10447001 - 财政年份:2021
- 资助金额:
$ 4.31万 - 项目类别:
Production Of HIV And HIV Related Proteins For Structural Studies
用于结构研究的 HIV 和 HIV 相关蛋白的生产
- 批准号:
10707808 - 财政年份:
- 资助金额:
$ 4.31万 - 项目类别:
Production Of HIV And HIV Related Proteins For Structural Studies
用于结构研究的 HIV 和 HIV 相关蛋白的生产
- 批准号:
10265847 - 财政年份:
- 资助金额:
$ 4.31万 - 项目类别: