Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition

YAP1 驱动的 KRAS-G12C 抑制抵抗机制

基本信息

项目摘要

Mutationally activated KRAS comprises the major oncogenic driver in the top three causes of cancer deaths in the US: lung (LAC), colorectal (CRC), and pancreatic ductal adenocarcinoma (PDAC). In 2021, a milestone in anti-KRAS drug discovery was achieved, with the first clinically effective direct inhibitor of KRAS approved, for the treatment of KRASG12C mutant lung cancer. However, as with essentially all targeted anti-cancer therapies, both de novo resistance and treatment-associated acquired resistance have recently been reported. As anticipated, mutations that reactivate RAS and RAS effector signaling through the RAF-MEK-ERK mitogen- activated protein kinase signaling network (e.g., activating mutations in BRAF, MEK1) were identified in LAC and CRC patients treated with KRASG12C selective inhibitors (G12Ci), and combinations that concurrently target these resistance mechanisms are now under clinical evaluation. However, no genetic mechanisms were identified in up to 50% of patients who relapsed on G12Ci treatment. To address possible ERK MAPK-independent resistance mechanisms, my studies have identified and validated the downstream target of the Hippo tumor suppressor pathway, the YAP1 transcriptional coactivator and oncoprotein, as a driver of resistance to G12Ci- mediated growth suppression. Consistent with previous studies that established the ability of YAP1 activation to overcome addiction to mutant KRAS, my preliminary analyses demonstrated that ectopic overexpression of wild- type or activated YAP1 drives resistance to G12Ci treatment in KRASG12C mutant LAC, CRC and PDAC cell lines. This finding establishes the rationale and foundation for my research goal: to determine the mechanistic basis for YAP1-mediated resistance to G12Ci treatment. I hypothesize that identification of YAP1-driven resistance mechanisms will establish combinations of pharmacologic inhibitors that can enhance the long-term anti-tumor efficacy of G12Ci and other KRAS-targeted therapies. I have developed three aims to address the mechanisms by which YAP1 drives resistance. First, I will determine the role of the TEAD transcription factors in YAP1-driven KRAS-independence. These studies may validate the clinical application of TEAD inhibitors for the treatment of KRAS-mutant PDAC and other cancers. Second, I will identify YAP1- regulated genes that sustain KRAS-independent growth, in support of a model where YAP1 overcomes KRAS- addiction by restoring expression of key KRAS-regulated genes. Finally, I will identify KRAS-regulated metabolic processes that are both sustained by YAP1 activation and important for PDAC growth. Taken together, my studies may validate an important driver of resistance to all KRAS-targeted therapies and define therapeutic approaches to overcome YAP1-driven drug resistance. These studies will require my application of a diverse spectrum of experimental approaches, advance my understanding of key steps in anti-cancer drug development, and foster my career development as an independent cancer researcher.
突变激活的Kras包括癌症死亡的前三名主要驱动因素 美国:肺(LAC),结直肠(CRC)和胰腺导管腺癌(PDAC)。 2021年,一个里程碑 通过批准KRAS的第一个有效的直接抑制剂,实现了抗KRAS药物发现 Krasg12c突变肺癌的治疗。但是,与基本上所有有针对性的抗癌疗法一样, 最近已经报道了从头耐药性和与治疗相关的获得性抗性。作为 预期的是,通过RAF-MEK-ERK促丝分裂原-ERK-MEK-ERK-ERK-ERK-ERK重新激活RAS和RAS效应子信号的突变 在LAC和 用KRASG12C选择性抑制剂(G12CI)治疗的CRC患者以及同时针对这些抑制剂的组合 电阻机制现在正在临床评估下。但是,未在 接受G12CI治疗的患者中,多达50%的患者。解决可能的ERK MAPK独立 电阻机制,我的研究已经确定并验证了河马肿瘤的下游靶标 抑制途径,YAP1转录共激活剂和癌蛋白,作为对G12CI-的抗性的驱动力 介导的生长抑制。与以前确定YAP1激活能力的研究一致 克服对突变kras的成瘾,我的初步分析表明,野生的异位过表达 类型或活化的YAP1在KRASG12C突变体LAC,CRC和PDAC细胞中驱动对G12CI处理的抵抗力 线。这一发现确定了我的研究目标的基本原理和基础:确定机制 YAP1介导的对G12CI治疗的抗性的基础。我假设对YAP1驱动的识别 耐药机制将建立可以增强的药理学抑制剂组合 G12CI和其他靶向KRAS的疗法的长期抗肿瘤功效。我已经开发了三个目标 解决YAP1驱动阻力的机制。首先,我将确定tead的作用 YAP1驱动的KRAS独立性中的转录因子。这些研究可能会验证 将抑制剂用于治疗KRAS突变PDAC和其他癌症。其次,我将确定yap1- 在支持Yap1克服KRAS- 通过恢复关键KRAS调节基因的表达来成瘾。最后,我将确定受KRAS调节的代谢 YAP1激活所维持的过程均对PDAC增长很重要。总之,我 研究可能会验证对所有靶向KRAS靶向疗法的耐药性的重要驱动力并定义治疗方法 克服YAP1驱动的耐药性的方法。这些研究将需要我应用多样的 实验方法的范围,促进我对抗癌药物开发的关键步骤的理解, 并促进我作为独立癌症研究员的职业发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Cole Edwards其他文献

Alexander Cole Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Cole Edwards', 18)}}的其他基金

Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
  • 批准号:
    10537668
  • 财政年份:
    2022
  • 资助金额:
    $ 3.88万
  • 项目类别:

相似国自然基金

基于脱氢弯孢霉素骨架的ACLY降解剂的设计、合成及抗肿瘤活性研究
  • 批准号:
    82304312
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于阳离子-π相互作用的“开/关”型纳米光敏剂的光敏活性调控及其抗肿瘤研究
  • 批准号:
    82304434
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
  • 批准号:
    82303561
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PROTAC的选择性AKT1降解剂的设计、合成及抗肿瘤活性研究
  • 批准号:
    82304287
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于PWWP域的NSD2蛋白降解剂的设计、合成与抗肿瘤活性研究
  • 批准号:
    22307132
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanisms of YAP1-driven resistance to KRAS-G12C inhibition
YAP1 驱动的 KRAS-G12C 抑制抵抗机制
  • 批准号:
    10537668
  • 财政年份:
    2022
  • 资助金额:
    $ 3.88万
  • 项目类别:
Multi-Wavelength Fluorescence Radical Dosimetry for Real-Time Assessment of Protein Footprinting Radical Yield
用于实时评估蛋白质足迹自由基产量的多波长荧光自由基剂量测定
  • 批准号:
    10250755
  • 财政年份:
    2021
  • 资助金额:
    $ 3.88万
  • 项目类别:
In-cell Automated Flash Oxidation (IC-AutoFox™) Protein Footprinting System
细胞内自动闪式氧化 (IC-AutoFox™) 蛋白质足迹系统
  • 批准号:
    10589128
  • 财政年份:
    2020
  • 资助金额:
    $ 3.88万
  • 项目类别:
In-cell Automated Flash Oxidation (IC-AutoFox™) Protein Footprinting System
细胞内自动闪式氧化 (IC-AutoFox™) 蛋白质足迹系统
  • 批准号:
    10478371
  • 财政年份:
    2020
  • 资助金额:
    $ 3.88万
  • 项目类别:
Mechanisms of Cell Death and Inflammation in Chemotherapy-Induced Oral Mucositis
化疗引起的口腔粘膜炎细胞死亡和炎症的机制
  • 批准号:
    10251626
  • 财政年份:
    2020
  • 资助金额:
    $ 3.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了