Blocking granzyme-mediated immune suppression to enhance HIV vaccine efficacy
阻断颗粒酶介导的免疫抑制以增强艾滋病毒疫苗的功效
基本信息
- 批准号:10673227
- 负责人:
- 金额:$ 85.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-13 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAffinityAnimal ModelAnimalsAntibodiesAntibody ResponseAntigensB-LymphocytesBiological AssayCD4 Positive T LymphocytesCell DeathCellsCessation of lifeChronicClustered Regularly Interspaced Short Palindromic RepeatsDevelopmentDissectionDoseEnzyme-Linked Immunosorbent AssayEvaluationFlow CytometryFosteringGenerationsGenesGoalsGranzymeHIVHIV InfectionsHIV envelope proteinHIV vaccineHelper-Inducer T-LymphocyteHumanImmuneImmune responseImmunityImmunizationImmunologicsImmunosuppressionImpairmentIn VitroIndividualInfectionInfusion proceduresInvadedInvestigationKiller CellsLongevityMacacaMacaca mulattaMeasurableMeasuresMediatingMediatorModelingMolecularMusNatural Killer CellsOutcome StudyPersonsPhasePopulationPreventionRecording of previous eventsRectumResearchRoleSIVSchemeStructure of germinal center of lymph nodeT cell responseT memory cellT-Cell ActivationT-LymphocyteTestingTimeToxicity TestsVaccinationVaccinesViralVirusWorkadaptive immune responseadaptive immunityautoreactivitycell killingcomorbidityexperimental studyglobal healthhigh riskhuman modelimmunoregulationimprovedin vivoinhibitorinnovationneutralizing antibodynext generationnonhuman primatenovel vaccinespandemic diseasepathogenperforinpreventpublic health interventionreceptorrectalresponserestraintsimian human immunodeficiency virussmall moleculesmall molecule inhibitorsuccesstooltumorvaccine efficacyvaccine responsevaccine strategy
项目摘要
SUMMARY
Immunization represents one of the most successful public health interventions in human history, preventing
more than 2 million deaths each year. Vaccine success depends on a variable combination of antibodies that
can neutralize the invading pathogen and virus-specific T cells that kill infected targets. However, the induction
of neutralizing antibodies and antiviral T cells that are sufficiently functional and broadly targeted to thwart a
highly mutable pathogen like HIV has proven exceptionally difficult in both humans and animal models. Thus,
there is currently no efficacious vaccine to prevent the nearly 5,000 new infections with HIV that occur each day.
This shortcoming in vaccine success is likely due to intrinsic immune regulatory mechanisms that limit the
quantity and quality of HIV-specific immune responses. Development of translational means to overcome these
immunological roadblocks holds great promise for advancement of next-generation vaccines to prevent HIV
infection and improve global health.
Our research focuses on the remarkable capacity of natural killer (NK) cells to suppress the magnitude and
quality of antiviral T and B cell responses triggered after immunization. NK cells impair the generation of
protective neutralizing antibody responses by inhibiting follicular helper T cell responses and restricting affinity
maturation of antibodies within germinal centers. This NK-cell immunosuppression also limits the quantity and
quality of antiviral memory T cell responses. NK cells achieve this suppressive effect via perforin-dependent
killing of activated T cells, although the specific receptors used to recognize target T cells and perforin-delivered
granzymes involved in triggering cell death remain incompletely defined. Whereas inhibition of perforin could
curtail NK cell-mediated immune suppression, this broad of an approach could temporarily undermine immunity
against pathogens and tumors, and thus a more refined approach targeting granzymes is proposed.
Therefore, the goal of this proposal is to advance an innovative high risk, high impact approach to foster HIV
vaccine efficacy through selective inhibition of granzymes involved in the immunosuppressive activity of NK cells.
Initial experiments in mice will use small molecule inhibitors and CRISPR to define the utility of targeting a specific
granzyme to limit NK-cell killing of T cells and suppression of vaccine-elicited adaptive immunity. Select inhibitors
will be validated in Rhesus macaques. Based on quantitatively defined go/no-go criteria establishing the success
of granzyme targeting to enhance vaccine efficacy, we will proceed to evaluation of this approach in vaccine-
mediated prevention of SIV infection in non-human primates. These experiments will also open impactful
avenues of investigation into the molecular features of both the immunosuppressive subset of NK cells and
targeted subpopulation of T cells. Thus, the proposed work will facilitate subsequent development and
deployment of innovative strategies to enhance HIV vaccine efficacy.
概括
免疫是人类历史上最成功的公共卫生干预措施之一,阻止
每年有超过200万人死亡。疫苗成功取决于抗体的可变组合
可以中和杀死受感染靶标的入侵病原体和病毒特异性T细胞。但是,归纳
中和抗体和抗病毒T细胞的功能足够功能,广泛针对阻碍A
在人类和动物模型中,像HIV这样的高度可变的病原体都非常困难。因此,
目前尚无有效的疫苗来防止每天发生近5,000种新的艾滋病毒感染。
疫苗成功的这种缺点可能是由于固有的免疫调节机制限制了
HIV特异性免疫反应的数量和质量。转化手段的发展来克服这些
免疫障碍对下一代疫苗的发展有很大的希望,以防止艾滋病毒
感染并改善全球健康。
我们的研究重点是自然杀手(NK)细胞的显着能力来抑制大小和
免疫后触发的抗病毒T和B细胞反应的质量。 NK细胞会损害生成
通过抑制卵泡辅助T细胞反应和限制亲和力,保护性中和抗体反应
生发中心内抗体的成熟。这种NK细胞免疫抑制也限制了数量和
抗病毒记忆T细胞反应的质量。 NK细胞通过依赖穿孔蛋白实现这种抑制作用
杀死活化的T细胞,尽管用于识别靶T细胞和渗透蛋白的特定受体杀死
涉及触发细胞死亡的粒酶仍未完全定义。而抑制穿孔可以
减少NK细胞介导的免疫抑制,这种宽的方法可能会暂时破坏免疫力
提出了针对病原体和肿瘤,因此提出了针对颗粒酶的更精致的方法。
因此,该提案的目的是提高创新的高风险,高影响力来促进艾滋病毒
通过选择性抑制涉及NK细胞免疫抑制活性的粒酶,疫苗功效。
小鼠中的初始实验将使用小分子抑制剂,并将CRISPR定义为靶向特定的实用性
颗粒酶以限制T细胞的NK细胞杀死和抑制疫苗吸收的适应性免疫。选择抑制剂
将在恒河猕猴中进行验证。基于定义定义的GO/NO-GO标准建立成功
颗粒靶靶向增强疫苗功效的靶向,我们将继续评估疫苗的这种方法
介导的非人类灵长类动物中SIV感染的预防。这些实验也将打开影响力
研究NK细胞的免疫抑制子集的分子特征的研究途径和
T细胞的靶向亚群。因此,拟议的工作将促进后续发展,并
部署创新策略以增强HIV疫苗功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijayakumar Velu其他文献
Vijayakumar Velu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vijayakumar Velu', 18)}}的其他基金
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 85.1万 - 项目类别:
Developing Cyclopeptide Nef Inhibitors to Facilitate HIV-1 Eradication
开发环肽 Nef 抑制剂以促进 HIV-1 根除
- 批准号:
10759561 - 财政年份:2023
- 资助金额:
$ 85.1万 - 项目类别:
Deciphering Early Stages of Polyomavirus CNS Pathogenesis and Immunity
破译多瘤病毒中枢神经系统发病机制和免疫的早期阶段
- 批准号:
10785321 - 财政年份:2022
- 资助金额:
$ 85.1万 - 项目类别:
Deciphering Early Stages of Polyomavirus CNS Pathogenesis and Immunity
破译多瘤病毒中枢神经系统发病机制和免疫的早期阶段
- 批准号:
10449608 - 财政年份:2022
- 资助金额:
$ 85.1万 - 项目类别: