Mouse, Man, and Machine: Combining Model Systems to Develop a Biomarker for Cochlear Deafferentation in Humans (Administrative Supplement)
小鼠、人和机器:结合模型系统开发人类耳蜗传入神经阻滞的生物标志物(行政补充)
基本信息
- 批准号:10681110
- 负责人:
- 金额:$ 1.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAffectAgingAnimal ModelAuditoryAuditory Brainstem ResponsesBiological MarkersBiological ModelsCochleaComputer ModelsDataDeafferentation procedureDevelopmentDiagnosisDiagnostic testsHearing TestsHearing problemHistologicHumanHyperacusisIndividualInner Hair CellsKnowledgeLeadMeasurementMeasuresMethodsMissionMusOuter Hair CellsPeripheralPersonsPharmacotherapyPhysiologicalPrevalencePreventionPublic HealthReflex actionResearchRisk FactorsSpeech PerceptionSynapsesTestingTinnitusTranslationsUnited States National Institutes of HealthWorkbasecell injurydisabilityear muscleganglion cellhuman modelhuman subjectindividual patientinnovationmanmiddle earnoise exposureotoacoustic emissionpreventresearch clinical testingresponsespiral ganglion
项目摘要
Project Summary
Clinical testing for peripheral auditory dysfunction focuses on the audiogram. However, many auditory perceptual
deficits, such as tinnitus, hyperacusis, and difficulty with speech perception, cannot be fully explained by the
audiogram. Cochlear deafferentation (i.e., loss of inner hair cells, spiral ganglion cells, or cochlear synapses),
may contribute to these perceptual problems. However, there is currently no method for diagnosing
deafferentation in living humans. This prevents us from determining the prevalence of deafferentation in humans,
identifying deafferentation risk factors and perceptual consequences, or testing potential drug treatments.
Several non-invasive physiological measures are sensitive to loss of cochlear synapses (a form of
deafferentation) in animal models, including the auditory brainstem response (ABR), the envelope following
response (EFR), and the middle ear muscle reflex (MEMR). However, it is unclear how cochlear gain loss (e.g.,
due to outer hair cell damage) impacts the relationship between deafferentation and these physiological
measures, hindering translation to a diagnostic test for deafferentation. The overall objective of this proposal is
to develop a computational model that can estimate deafferentation from non-invasive physiological
measurements in humans with varying degrees of cochlear gain loss. The central hypothesis is that cochlear
gain loss can be predicted from distortion product otoacoustic emissions (DPOAEs) and deafferentation can be
predicted from a combination of ABR, EFR, and MEMR measurements. This hypothesis will be tested by
pursuing four specific aims: 1) Expand a computational model of the auditory periphery (CMAP) to predict ABR,
EFR, MEMR, and DPOAE responses in mice and humans based on both cochlear gain and afferent function, 2)
Validate and refine the CMAP by collecting physiological and histological data from mouse, 3) Predict
deafferentation in individual human subjects from physiological measurements by fitting the CMAP using
Bayesian regression, and 4) Evaluate deafferentation predictions for their relationship with risk factors and
predicted perceptual consequences of deafferentation. This approach is innovative because it extends prior work
to animal and human models with both cochlear gain loss and deafferentation, uses computational modeling to
bridge the gap between model systems, and combines multiple physiological measurements to predict
deafferentation in individual human subjects. The proposed research is significant because we currently have
no means of diagnosing deafferentation. Thus, the prevalence, associated risk factors, and perceptual impacts
of this condition are unclear. This project is expected to result in a biomarker of deafferentation for individual
patients that is based on their physiological measurements. This will enable us to identify peripheral auditory
damage that is independent of cochlear gain loss. If the biomarker is correlated with risk factors such as noise
exposure and auditory perceptual deficits such as speech perception difficulty, it will allow for the development
of targeted treatments for auditory perceptual deficits and strategies for damage prevention.
项目摘要
外围听觉功能障碍的临床测试集中在听力图上。但是,许多听觉感知
缺陷,例如耳鸣,超声波和语音感知的困难,无法完全解释
听力图。人工耳蜗(即,内毛细胞,螺旋神经节细胞或耳蜗突触的丧失),
可能会导致这些感知问题。但是,目前尚无诊断的方法
在活人中脱颖而出。这样可以防止我们确定人类剥夺的盛行率,
识别脱离危险因素和感知后果,或测试潜在的药物治疗。
几种非侵入性生理指标对人工耳蜗突触的丧失敏感(一种形式(一种形式)
在动物模型中,包括听觉的脑干响应(ABR),信封遵循的动物模型)。
反应(EFR)和中耳肌肉反射(MEMR)。但是,目前尚不清楚耳蜗增益损失如何(例如,
由于外毛细胞的损伤)会影响脱毛和这些生理的关系
措施,阻碍翻译为诊断测试的脱落测试。该提议的总体目标是
开发一个计算模型,该模型可以估计非侵入性生理学
人工收益损失程度不同的人类的测量。中心假设是人工耳蜗
可以通过失真产物的耳声发射(DPOAE)预测增益损失
通过ABR,EFR和MEMR测量的组合预测。该假设将通过
追求四个具体目标:1)扩展一个听觉外围(CMAP)的计算模型,以预测ABR,
基于耳蜗增益和传入功能,小鼠和人类的EFR,MEMR和DPOAE反应,2)
通过从小鼠那里收集生理和组织学数据来验证和完善CMAP,3)预测
通过使用使用CMAP拟合CMAP的人类受试者对个别人类受试者的脱俗
贝叶斯回归,4)评估其与风险因素和风险因素的关系
预测的脱落后果。这种方法具有创新性,因为它扩展了先前的工作
对于具有人工耳蜗增益损失和剥夺的动物和人类模型,使用计算建模来
弥合模型系统之间的差距,并结合多个生理测量以预测
在个别人类受试者中脱颖而出。拟议的研究很重要,因为我们目前有
无法诊断出脱落的手段。因此,患病率,相关的风险因素和感知影响
这种情况尚不清楚。预计该项目将导致个人剥离的生物标志物
基于其生理测量的患者。这将使我们能够识别外围听觉
与人工耳蜗损失无关的损害。如果生物标志物与噪声等风险因素相关
曝光和听觉感知缺陷,例如语音感知难度,它将允许发展
有针对性治疗的听觉感知缺陷和预防损害的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naomi Bramhall其他文献
Naomi Bramhall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naomi Bramhall', 18)}}的其他基金
Mouse, Man, and Machine: Combining Model Systems to Develop a Biomarker for Cochlear Deafferentation in Humans
小鼠、人和机器:结合模型系统开发人类耳蜗传入神经阻滞的生物标志物
- 批准号:
10666638 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Resolving the Paradox of Hearing Complaints with a Normal Audiogram: Differential Diagnosis and Perceptual Impacts of Cochlear Deafferentation
用正常听力图解决听力投诉的悖论:耳蜗传入神经阻滞的鉴别诊断和知觉影响
- 批准号:
10596630 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Resolving the Paradox of Hearing Complaints with a Normal Audiogram: Differential Diagnosis and Perceptual Impacts of Cochlear Deafferentation
用正常听力图解决听力投诉的悖论:耳蜗传入神经阻滞的鉴别诊断和知觉影响
- 批准号:
10424840 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Noise-Induced Cochlear Neuronal Degeneration and Its Perceptual Consequences
噪声引起的耳蜗神经元变性及其感知后果
- 批准号:
8781370 - 财政年份:2014
- 资助金额:
$ 1.48万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Administrative supplement for the purchase of a confocal microscope
购买共聚焦显微镜的行政补充
- 批准号:
10797113 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Exploring CRMP5 as a novel target for Alzheimers disease
探索 CRMP5 作为阿尔茨海默病的新靶点
- 批准号:
10712329 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
CalRepository: A database of indirect calorimetry experiments for the study of energy homeostasis
CalRepository:用于研究能量稳态的间接量热实验数据库
- 批准号:
10886264 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Impact of Hepatitis C and HIV coinfection on biological aging and hepatocellular carcinoma risk
丙型肝炎和艾滋病毒合并感染对生物衰老和肝细胞癌风险的影响
- 批准号:
10872804 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别: