The transcriptome-wide impact of biological perturbations
生物扰动对转录组的影响
基本信息
- 批准号:10672663
- 负责人:
- 金额:$ 3.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBiologicalBiological AssayBiologyBrainCell LineCell physiologyChromatinChronic Myeloid LeukemiaClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComputational BiologyComputer softwareDataData SetDiseaseFellowshipGene ClusterGene DeletionGene ExpressionGene Expression ProfileGenesGeneticGenetic VariationGenomeGoalsHumanHuman GeneticsIn VitroIndividualLiteratureMalignant NeoplasmsMapsMeasuresMentorsMentorshipMethodologyMethodsModelingModernizationMusMutationNeocortexNeurodevelopmental DisorderParameter EstimationPathogenicityPathologicPatternPhenotypeRepressionResearchScientistShapesSignal TransductionStatistical MethodsStratificationStructureTestingTrainingWorkbasechronic myeloid leukemia celldifferential expressionexperimental studyfunctional genomicsgene functiongenome-wideimprovedin vivoinsightinterestknock-downmethod developmentmodel buildingneocorticalnovelopen sourceresponserisk varianttooltool developmenttranscriptometranscriptome sequencingtranscriptomics
项目摘要
Abstract
An important goal in computational biology is to leverage data from high-throughput functional assays to infer
the biological consequences of genetic variation. This goal is frequently approached by pairing RNA sequencing
and differential expression analysis. Most differential expression methods seek to identify a small number of
genes and gene-sets that are affected by a genetic perturbation. However, some genes, such as chromatin
regulators, may impact thousands of genes across the transcriptome. These dispersed effects are not captured
by existing methods. We will address this methodological gap in the differential expression field by
developing a novel statistical tool, and will apply this tool to both normative and disease contexts. In
Aim 1, we propose the Transcriptome-wide Impact Model (TIM), a parametric likelihood-based estimator of the
overall effect that a perturbation has on the transcriptome. TIM builds on existing differential expression methods,
but estimates parameters of the distribution of differential expression effects, rather than individual per-gene
effect sizes. This model is also extended to estimate gene-set enrichments and correlation between differential
expression signatures. In Aim 2, we aim to apply TIM to a recent Perturb-Seq dataset that perturbs all expressed
genes in vitro in a massively parallel manner, enabling us to identify which genes and gene-sets induce the
greatest transcriptomic change in human chronic myeloid leukemia cell lines when knocked down. We will also
use TIM to identify modules of genes that have similar impact on the transcriptome, and use these modules to
annotate genic function. In Aim 3, we will apply TIM to an in vivo Perturb-Seq dataset of 35 neurodevelopmental
disorder genes in developing mouse neocortex. Through this Aim, we will stratify neurodevelopmental disorder
genes by degree of transcriptome-wide impact, testing the hypothesis that neurodevelopmental-disorder-
associated gene expression regulators exert highly dispersed effects on the transcriptome in brain. If true, this
finding would raise the intriguing question of whether small, dispersed expression effects can be pathogenic,
opening novel avenues for research into neurodevelopmental disorders, as well as many other diseases that are
associated with expression regulators (e.g. cancer). We will additionally use TIM to cluster neurodevelopmental
disorder genes by similarity of transcriptomic effects, to identify genes with putatively convergent mechanism.
Broadly, our model will allow conceptually novel insight to be extracted from differential expression experiments,
with applicability to any biological perturbation of interest.
抽象的
计算生物学的一个重要目标是利用高通量功能测定的数据来推断
遗传变异的生物学后果。通过配对RNA测序通常可以实现此目标
和差异表达分析。大多数差异表达方法寻求识别少数
受遗传扰动影响的基因和基因组。但是,某些基因,例如染色质
调节剂可能会影响整个转录组的数千个基因。这些分散的效果未捕获
通过现有方法。我们将通过
开发一种新型的统计工具,并将将此工具应用于规范和疾病环境。在
AIM 1,我们提出了全转录组影响模型(TIM),这是一个基于参数的可能性估计器
扰动对转录组的总体影响。蒂姆建立在现有的微分表达方法的基础上
但是估计差异表达效应的分布的参数,而不是单独的
效应尺寸。该模型还扩展到估计基因 - 富集和差分之间的相关性
表达签名。在AIM 2中,我们的目标是将TIM应用于最近表达的近期witturb-seq数据集
基因以大规模平行的方式体外,使我们能够识别哪些基因和基因诱导
撞倒时人类慢性髓样白血病细胞系中的最大转录组变化。我们也会
使用TIM来识别对转录组有相似影响的基因模块,然后使用这些模块
注释基因函数。在AIM 3中,我们将将TIM应用于35个神经发育的体内witturb-seq数据集
在发展小鼠新皮层中的疾病基因。通过这个目标,我们将分层神经发育障碍
按照整个转录组影响程度的基因,检验了神经发育疾病的假设
相关的基因表达调节剂对大脑转录组产生高度分散的影响。如果是真的,这
发现将提出一个有趣的问题,即小小的,分散的表达效应是否可以是致病性的,
开辟了针对神经发育障碍研究的新型途径,以及许多其他疾病
与表达调节剂有关(例如癌症)。我们还将使用TIM聚集神经发育
通过转录组效应的相似性,疾病基因,以鉴定具有预融合机制的基因。
从广义上讲,我们的模型将允许从概念上的新见解中从差异表达实验中提取出来,
适用于任何感兴趣的生物学扰动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ajay Nadig其他文献
Ajay Nadig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于新型微凝胶/金纳米粒复合生物压力探针的肿瘤压力检测和影响因素研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
用于快速检测的纸基材料对生物医学比色反应信号的影响机制
- 批准号:82072016
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
土壤胞外DNA的分离、检测及其对土壤微生物群落结构研究的影响
- 批准号:31971530
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
利用微波技术快速诊断金属污染物对微生物群落的影响
- 批准号:41603069
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
采用三维碳气凝胶微电极电化学生物传感器实时检测电刺激多巴胺能神经元对多巴胺分泌的影响
- 批准号:21505108
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 3.56万 - 项目类别:
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 3.56万 - 项目类别:
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 3.56万 - 项目类别:
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 3.56万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 3.56万 - 项目类别: