Dissecting motor cortex modulation of nociception during chronic pain
剖析慢性疼痛期间运动皮层对伤害感受的调节
基本信息
- 批准号:10697389
- 负责人:
- 金额:$ 15.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-06 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAffectAgonistAmericanAnalgesicsAreaBehaviorBehavioral ParadigmBody RegionsBody partBrain StemCalciumClinicalClinical ProtocolsComplementEnvironmentFaceFacial PainFluorescent in Situ HybridizationGoalsHyperalgesiaImageImaging TechniquesIndividualJawKnockout MiceKnowledgeMachine LearningMagnetismMapsMentorshipMethodsModelingMotorMotor CortexMusNaloxoneNeprilysinNerveNeurobiologyNeuronsNeurosciencesNociceptionOpioidOpioid AntagonistOpioid PeptideOpioid ReceptorOutputPainPathway interactionsPatternPeptidesPersistent painPhysiciansPositioning AttributePropertyReportingResearchResearch PersonnelResearch Project GrantsRodentRodent ModelRunningScientistSignal PathwaySignal TransductionSiliconesSiteStructure of trigeminal nerve spinal tract nucleusTechniquesTechnologyTestingTrainingTrigeminal SystemTrigeminal nerve structureViralWorkallodyniaantagonistantinociceptionbehavioral responsecell typechronic painclinical efficacyclinical implementationclinical painclinical practiceconstrictionendogenous opioidsexperimental studyhuman subjectimprovedinferior alveolar nerveinhibitorinnovationmachine learning algorithmmouse geneticsneuralneurobiological mechanismnoveloff-target siteopioid epidemicpain modelpain reliefpain signalpainful neuropathypharmacologicprogramsrecruittwo-photon
项目摘要
Abstract
The heavy burden of chronic pain and the Opioid Epidemic has prompted an urgent, worldwide search for
alternative, non-addictive methods of analgesia. One promising alternative is non-invasive electrical or magnetic
stimulation of the motor cortex (MC). While MC stimulation (MCS) has repeatedly been found to reduce chronic
pain in human subjects and to decrease nocifensive behaviors in rodent pain models, major questions remain
about the MCS analgesic mechanisms of action, how MC influences activity in nociceptive circuits, and how to
improve MCS clinical efficacy. Evidence suggests that MCS antinociceptive efficacy increases when the
stimulation targets the region in motor cortex that corresponds to the body part from which nociception originates
(somatotopically matched) and that MCS analgesia requires endogenous opioid activity. Here, I propose to use
a rodent model of trigeminal neuropathic pain to elucidate the underlying mechanisms of MCS antinociception
and to define key MCS features that pain clinicians can use to improve MCS efficacy. To characterize MCS
mechanisms, I will 1) quantify the efficacy of somatotopically matched MCS (ssMCS), 2) determine what opioid
receptor subtypes are required for MCS antinociception, and 3) identify how endogenous opioids modulate an
opioid-sensitive MC descending circuit to the spinal trigeminal nucleus pars caudalis (SpVC) during ssMCS.
To ascertain MCS efficacy between matched and off-target MCS in two different nerve constriction models, I will
use classic pain behavioral paradigms along with cutting-edge machine learning algorithms to analyze mouse
behavioral responses. To interrogate the combined impact of MC somatotopy and endogenous opioid signaling
in MCS analgesia, I will focus on the descending projection from MC to SpVC. I will determine where opioid
receptor types and endogenous opioid peptides are positioned along this circuit and then assess the impact of
ssMCS +/- opioid signaling on MC and SpVC neural activity using cutting-edge calcium imaging techniques in
behaving mice. Altogether, this project will determine how MCS modulates nociception through endogenous
opioid signaling in somatotopically aligned circuits to guide the optimization of MCS clinical protocols. The results
will also provide the first report of neural activity during and after ssMCS at both the target and in an MC output.
This project will take place in the lab of Prof. Mark Schnitzer’s (sponsor) lab at Stanford, an ideal environment
for innovative neuroscience. Together with the mentorship of leading pain neuroscientists, Profs. Greg Scherrer
and Sean Mackey (co-sponsors), the proposed training plan provides an excellent opportunity for me to become
an expert in pain and opioid neurobiology while interrogating novel scientific concepts with cutting-edge
technology. Further, I will gain valuable clinical knowledge by interacting with Prof. Mackey and his team of
clinical pain researchers and physicians. Finally, this project will help me develop into an independent scientist
and ideally position me to start my own lab program studying pain circuitry and its intersection with motor circuits.
抽象的
慢性疼痛和阿片类药物流行的沉重负担促使全球范围内紧急寻找药物
另一种非成瘾性镇痛方法是非侵入性电或磁镇痛方法。
运动皮层 (MC) 刺激,而 MC 刺激 (MCS) 已多次被发现可以减少慢性疾病。
为了减少人类受试者的疼痛并减少啮齿动物疼痛模型中的伤害行为,主要问题仍然存在
关于 MCS 镇痛作用机制、MC 如何影响伤害感受回路的活动以及如何
改善 MCS 的临床疗效 有证据表明,当
刺激的目标是运动皮层中与伤害感受起源的身体部位相对应的区域
(体位匹配)并且 MCS 镇痛需要内源性阿片类药物活性。
啮齿动物三叉神经病理性疼痛模型,阐明 MCS 抗疼痛的潜在机制
并定义疼痛反抗者可以用来提高 MCS 功效的关键 MCS 特征来表征 MCS。
机制,我将 1) 量化体位匹配 MCS (ssMCS) 的功效,2) 确定哪种阿片类药物
MCS 抗镇痛作用需要受体亚型,并且 3) 确定内源性阿片类药物如何调节
ssMCS 期间阿片敏感 MC 下行回路至三叉神经尾部脊髓核 (SpVC)。
为了确定两种不同神经收缩模型中匹配和脱靶 MCS 之间的 MCS 功效,我将
使用经典的疼痛范式行为以及尖端的机器学习算法来分析小鼠
探究 MC 体细胞和内源性阿片类药物信号传导的综合影响。
在 MCS 镇痛中,我将重点关注从 MC 到 SpVC 的下降投影,我将确定阿片类药物的位置。
受体类型和内源性阿片肽沿着该回路定位,然后评估
使用尖端钙成像技术对 MC 和 SpVC 神经活动进行 ssMCS +/- 阿片类信号传导
总之,该项目将确定 MCS 如何通过内源性调节伤害感受。
体细胞排列回路中的阿片类信号传导,指导 MCS 临床方案的优化。
还将在 ssMCS 期间和之后在目标和 MC 输出中提供神经活动的第一份报告。
该项目将在斯坦福大学 Mark Schnitzer 教授(赞助者)的实验室进行,环境理想
与领先的疼痛神经科学家 Greg Scherrer 教授一起指导。
和肖恩·麦基(共同发起人),拟议的培训计划为我提供了一个极好的机会,使我能够成为
疼痛和阿片类神经生物学专家,同时用尖端技术质疑新颖的科学概念
此外,我将通过与 Mackey 教授及其团队的互动获得宝贵的临床知识。
最后,这个项目将帮助我发展成为一名独立科学家。
并让我能够开始自己的实验室项目,研究疼痛电路及其与运动电路的交叉点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Mercer Lindsay其他文献
Nicole Mercer Lindsay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicole Mercer Lindsay', 18)}}的其他基金
Dissecting motor cortex modulation of nociception during chronic pain
剖析慢性疼痛期间运动皮层对伤害感受的调节
- 批准号:
10589724 - 财政年份:2022
- 资助金额:
$ 15.19万 - 项目类别:
Dissecting motor cortex circuits underyling chronic pain relief
剖析缓解慢性疼痛的运动皮层回路
- 批准号:
10401494 - 财政年份:2020
- 资助金额:
$ 15.19万 - 项目类别:
Dissecting motor cortex circuits underyling chronic pain relief
剖析缓解慢性疼痛的运动皮层回路
- 批准号:
10311478 - 财政年份:2020
- 资助金额:
$ 15.19万 - 项目类别:
相似国自然基金
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境激素壬基酚对变应性鼻炎的影响及其对GPER特异性激动剂G-1在变应性鼻炎治疗作用中的干扰机制研究
- 批准号:82000963
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
促生长激素释放激素激动剂抑制平滑肌细胞转分化对动脉粥样硬化的影响及机制研究
- 批准号:81900389
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
五羟色胺2C受体激动剂对2型糖尿病小鼠β细胞功能的影响及机制研究
- 批准号:81803644
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
cAMP信号激动剂对恶性胶质瘤血管新生和血管正常化的影响及机制研究
- 批准号:81803568
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 15.19万 - 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
- 批准号:
10738862 - 财政年份:2023
- 资助金额:
$ 15.19万 - 项目类别:
The role of delta opioid receptors in trigeminovascular pain
δ阿片受体在三叉血管疼痛中的作用
- 批准号:
10608549 - 财政年份:2023
- 资助金额:
$ 15.19万 - 项目类别:
Intracellular signaling mechanisms underlying opioid modulation of pain
阿片类药物调节疼痛的细胞内信号机制
- 批准号:
10607143 - 财政年份:2023
- 资助金额:
$ 15.19万 - 项目类别:
Kappa Opioid Receptor in Paraventricular Nucleus of Thalamus
丘脑室旁核中的 Kappa 阿片受体
- 批准号:
10659960 - 财政年份:2023
- 资助金额:
$ 15.19万 - 项目类别: