Dissemination of a tool for data-driven multiscale modeling of brain circuits
传播数据驱动的脑回路多尺度建模工具
基本信息
- 批准号:10669218
- 负责人:
- 金额:$ 23.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdvocateAlgorithmsAreaBRAIN initiativeBehaviorBiophysicsBrainBrain regionCellsCodeCommunitiesComplementComplexComputer ModelsComputer SimulationComputersDataData AnalysesData SetDendritesDiffusionDisparateDocumentationDura MaterEducationEducational process of instructingEducational workshopElectroencephalographyElectrophysiology (science)EnsureFrustrationGenerationsGrowthHumanImageInstitutionInstructionInternationalInternetIntuitionIon ChannelLanguageLibrariesLocationMeasuresMethodsModelingModernizationMolecularMultimediaNeocortexNeuronsNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchNewsletterOnline SystemsOperating SystemPatternPeer ReviewPerformancePersonsPopulationPublicationsPythonsQuality ControlReactionReportingReproducibilityResearchResearch PersonnelResourcesRunningSecond Messenger SystemsSignal TransductionSoftware ToolsSolidSpecific qualifier valueStandardizationStructureStudentsSynapsesSystemTestingTimeTrainingTranslatingUpdateValidationVisualizationWorkcell typecloud platformcomputational neurosciencecomputerized toolscopingdata integrationdata toolsdata visualizationdesigndissemination strategyexperimental studyflexibilitygraphical user interfaceimprovedinnovative neurotechnologiesinsightlarge datasetsmodel buildingmodel designmulti-scale modelingneglectneocorticalnetwork modelsneuralneural modelnovelonline communityonline tutorialopen sourcepreventprototyperapid growthsimulationstudent trainingsupercomputersymposiumtheoriesthree-dimensional visualizationtooltool developmentuser-friendly
项目摘要
Summary
Title: Dissemination of a tool for data-driven multiscale modeling of brain circuits.
PI: S Dura-Bernal
We are developing a novel software tool, called NetPyNE, that enables users to consolidate complex experimental
data from different scales into a unified computational model. Users are then be able to simulate and analyze this
model to better understand brain structure, dynamics and function in a unique framework that combines:
1. programmatic or GUI-driven model building using flexible, rule-based, high-level standardized specifications;
2. separation of model parameters from underlying technical implementations, preventing coding errors and making
models easier to read, modify, share and reuse; 3. support for multiple scales from molecule to cell to network;
4. support for complex subcellular mechanisms, dendritic connectivity and stimulation patterns; 5. efficient parallel
simulation both on stand-alone computers and supercomputers; 6. automated data analysis and visualization (e.g.,
connectivity, neural activity, information theoretic analysis); 7. importing and exporting to/from multiple standardized
formats; 8. automated parameter tuning (molecule to network level) using grid search and evolutionary algorithms.
NetPyNE's potential to benefit the research community is evidenced by several peer-reviewed publications and by
the steady growth of users and advocates. Over 50 researchers and students in our lab and collaborators' labs have
used a prototype of the tool for education or to investigate a variety of brain regions and phenomena. There is an
active online community who collaboratively contribute to the project, post questions and request features via the
GitHub platform, a mailing list and two Q&A forums. The Organization for Computational Neuroscience included a
2-page feature article on NetPyNE in their 2019 Winter Newsletter. NetPyNE is also being integrated with other
resources in the neuroscience community: Human Neocortical Neurosolver, Open Source Brain, Neuroscience
Gateway, and the NeuroML and SONATA international standardized network formats.
Our proposal is aimed at transforming NetPyNE into a solid and well-tested tool with a fully-featured GUI, and widely
disseminating the tool among the scientific community. The rapid growth of the tool means many features have been
added at a fast pace, with limited resources and time. We will now ensure all these features are properly evaluated for
reliability, robustness and scalability, well documented and incorporated into the GUI. The GUI will also be extended
to provide online web-based access and support visualization of larger models. We will also develop interactive
online tutorials to clearly explain and demonstrate the ample and diverse functionality included in our package.
Through a yearly multi-day course and tutorials/workshops at neuroscience conferences we will engage and train
students, experimental and computational neuroscientists, and clinicians in using NetPyNE for multiscale neural
modeling. Multiscale modeling complements experimentation by combining and making interpretable previously
incommensurable datasets. Simulations and analyses developed with NetPyNE provide a way to better understand
interactions across the brain scales, including molecular concentrations, cell biophysics, electrophysiology, neural
dynamics, population oscillations, EEG/MEG signals, and information theoretic measures.
概括
标题:用于数据驱动的脑电路多尺度建模工具。
pi:s dura-bernal
我们正在开发一种名为Netpyne的新型软件工具,该工具使用户能够合并复杂的实验
来自不同尺度的数据到一个统一的计算模型。然后,用户能够模拟和分析
更好地理解大脑结构,动态和功能的模型,以结合的独特框架:
1。使用基于规则的高级标准化规范的程序化或GUI驱动的模型构建;
2。模型参数与潜在的技术实现,防止编码错误和制作的分离
模型易于阅读,修改,共享和重复使用; 3。支持从分子到细胞再到网络的多个量表;
4。支持复杂的亚细胞机制,树突连通性和刺激模式; 5。有效的平行
在独立计算机和超级计算机上进行仿真; 6。自动数据分析和可视化(例如,
连通性,神经活动,信息理论分析); 7。向/来自多个标准化的进口和导出
格式; 8。使用网格搜索和进化算法的自动参数调整(分子至网络水平)。
Netpyne有利于研究社区的潜力,有几个经过同行评审的出版物以及
用户和拥护者的稳定增长。我们实验室和合作者实验室的50多名研究人员和学生有
使用该工具的原型进行教育或研究各种大脑区域和现象。有一个
积极的在线社区,为项目做出贡献,发布问题和请求功能
GitHub平台,邮件列表和两个问答论坛。计算神经科学组织包括
Netpyne在2019年冬季新闻通讯中有关Netpyne的两页专题文章。 Netpyne也正在与其他
神经科学社区的资源:人类新皮质神经覆盖,开源大脑,神经科学
Gateway以及Neuroml和Sonata国际标准化网络格式。
我们的建议旨在将Netpyne转变为具有功能齐全的GUI的坚实且经过充分测试的工具,并且广泛
在科学界传播该工具。该工具的快速增长意味着许多功能已经存在
以有限的资源和时间添加了快速的速度。现在,我们将确保对所有这些功能进行正确评估
可靠性,鲁棒性和可扩展性,已有文献记载并纳入GUI。 GUI也将扩展
提供基于Web的在线访问和支持较大模型的可视化。我们还将发展互动
在线教程清楚地解释并演示了我们包装中包含的充足和潜水员的功能。
通过在神经科学会议上的年度多天课程和教程/讲习班,我们将参与和培训
学生,实验和计算神经科学家以及使用Netpyne进行多尺度神经元的临床医生
造型。多尺度建模完成实验,以前结合和制造可解释
不可超过的数据集。 Netpyne开发的模拟和分析提供了一种更好地了解的方法
整个脑尺度的相互作用,包括分子浓度,细胞生物物理学,电生理学,神经元
动力学,人群振荡,脑电图/MEG信号和信息理论测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salvador Dura-Bernal其他文献
Salvador Dura-Bernal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salvador Dura-Bernal', 18)}}的其他基金
Dissemination of a tool for data-driven multiscale modeling of brain circuits
传播数据驱动的脑回路多尺度建模工具
- 批准号:
10827627 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
Dissemination of a tool for data-driven multiscale modeling of brain circuits
传播数据驱动的脑回路多尺度建模工具
- 批准号:
10241423 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
Dissemination of a tool for data-driven multiscale modeling of brain circuits
传播数据驱动的脑回路多尺度建模工具
- 批准号:
10487583 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
Development of robust cloud-based software for co-simulation of biophysical circuit and whole-brain network models
开发强大的基于云的软件,用于生物物理电路和全脑网络模型的联合仿真
- 批准号:
10609244 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
Dissemination of a tool for data-driven multiscale modeling of brain circuits
传播数据驱动的脑回路多尺度建模工具
- 批准号:
10020411 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Electronic Health Record Phenotyping for Case Detection and Prediction of Emergency Department Visits for Child and Adolescent Suicide Attempts
用于病例检测和预测儿童和青少年自杀未遂急诊科就诊的电子健康记录表型
- 批准号:
10507372 - 财政年份:2022
- 资助金额:
$ 23.18万 - 项目类别:
Electronic Health Record Phenotyping for Case Detection and Prediction of Emergency Department Visits for Child and Adolescent Suicide Attempts
用于病例检测和预测儿童和青少年自杀未遂急诊科就诊的电子健康记录表型
- 批准号:
10705670 - 财政年份:2022
- 资助金额:
$ 23.18万 - 项目类别: