Nanomechanical studies of cells and biomolecules
细胞和生物分子的纳米力学研究
基本信息
- 批准号:10668957
- 负责人:
- 金额:$ 40.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAtomic Force MicroscopyBiologic CharacteristicBiological ProcessBiologyCell membraneCell modelCellsChemicalsCouplingCrystallizationDataDevelopmentDiseaseFreezingGoalsImageIon Channel GatingLaboratoriesMathematicsMeasuresMechanicsMembrane ProteinsMethodsModelingMolecularMorphologyOrganellesPatternPhysiologicalRNAResearchResearch PersonnelResolutionRoleSamplingShapesTechniquesTechnologyTheoretical modelVisionVisualizationWorkbiological systemsbiophysical modelcellular imagingimaging modalityinterestmechanical behaviormechanical propertiesnanomechanicsnanoscalepreventprogramsprotein complexstructural biology
项目摘要
Abstract
The research in our laboratory is centered on the development of force-based mechanical
approaches to biomolecular and cellular imaging, and leveraging these capabilities to study a
number of questions in biomolecular dynamics and cells mechanics. Our approach to imaging
offers new capabilities in probing chemical, mechanical and electrical characteristics of
biological systems from molecules to cells. In biomolecular imaging, we focus on problems in
structural biology that can benefit from direct imaging in physiologically relevant conditions
where mechanical approaches like atomic force microscopy (AFM) have advantages. We
currently develop an AFM-based method to image dynamics of RNA/protein complexes and
membrane proteins with Angstrom scale resolution. In cell mechanical studies, we recently
developed a cell stiffness imaging method that provided unprecedented spatial resolution,
which helped reveal nanoscale patterns in cell stiffness that are described by precise
mathematical relationships. Existence of these patterns are not predicted by the current
quantitative models of cell mechanics. We developed a new model that not only explained our
findings, but also made new testable predictions that we subsequently confirmed. These
molecular and cellular studies shape the current research goals in our laboratory. On the
biomolecular imaging front, our goal for the next five years is to develop our technology to
achieve imaging of biomolecular dynamics in physiologically relevant conditions with Angstrom-
scale resolution. Currently, such high-resolution data is mainly coming from methods that work
with frozen or crystallized samples, which prevent observations of biomolecular dynamics. On
the cell mechanics front, our goals for the next five years include further developing our cell
mechanical model to address a large discrepancy between results measured by different
methods used by researchers. We believe the discrepancy is not due to technical problems of
various methods, but rater due to underlying assumptions about contact mechanics of cells,
that is, a conceptual issue. Addressing this discrepancy can help better predict cell mechanical
behavior in physiological contexts. We are also interested in investigating electromechanical
coupling in cell membranes and have already built a uniquely suited experimental setup to
probe electromechanical coupling in cell membranes. We are motivated by our recent
observations of strong coupling effects and potential effects of coupling on gating of ion
channels and the morphology of membranous organelles. Overall, the vision of our research
program is set by the important roles of nanoscale mechanical interactions in biology, and we
develop biophysical models and experimental capabilities to realize our vision.
抽象的
我们实验室的研究重点是基于力的机械的开发
生物分子和细胞成像方法,并利用这些能力来研究
生物分子动力学和细胞力学方面的问题数量。我们的成像方法
提供了探测化学、机械和电气特性的新功能
从分子到细胞的生物系统。在生物分子成像中,我们重点关注以下问题:
可以从生理相关条件下的直接成像中受益的结构生物学
其中原子力显微镜 (AFM) 等机械方法具有优势。我们
目前正在开发一种基于 AFM 的方法来对 RNA/蛋白质复合物的动态进行成像
具有埃级分辨率的膜蛋白。在细胞力学研究中,我们最近
开发了一种细胞硬度成像方法,提供了前所未有的空间分辨率,
这有助于揭示细胞硬度的纳米级模式,这些模式可以通过精确描述
数学关系。当前的情况无法预测这些模式的存在
细胞力学的定量模型。我们开发了一个新模型,它不仅解释了我们的
发现,但也做出了我们随后证实的新的可检验的预测。这些
分子和细胞研究塑造了我们实验室当前的研究目标。上
在生物分子成像前沿,我们未来五年的目标是开发我们的技术
使用 Angstrom- 在生理相关条件下实现生物分子动力学成像
尺度分辨率。目前,这种高分辨率的数据主要来自于有效的方法
使用冷冻或结晶的样品,这会妨碍生物分子动力学的观察。在
在细胞力学方面,我们未来五年的目标包括进一步开发我们的细胞
力学模型来解决不同测量结果之间的巨大差异
研究人员使用的方法。我们认为这种差异不是由于技术问题造成的
各种方法,但由于有关细胞接触力学的基本假设而进行评估,
也就是说,一个概念问题。解决这种差异可以帮助更好地预测细胞机械性能
生理背景下的行为。我们也有兴趣研究机电
耦合在细胞膜中,并已经建立了一个独特的适合的实验装置
探测细胞膜中的机电耦合。我们受到最近的激励
强耦合效应和耦合对离子门控的潜在影响的观察
通道和膜细胞器的形态。总体而言,我们的研究愿景
该计划是根据纳米级机械相互作用在生物学中的重要作用而设定的,我们
开发生物物理模型和实验能力来实现我们的愿景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ozgur Sahin其他文献
Ozgur Sahin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ozgur Sahin', 18)}}的其他基金
Developing novel LOX inhibitors to target chemotherapy resistant TNBC
开发新型 LOX 抑制剂以靶向化疗耐药的 TNBC
- 批准号:
10696810 - 财政年份:2023
- 资助金额:
$ 40.62万 - 项目类别:
Inhibiting tumor growth and metastasis in highly aggressive breast cancers with centrosome amplification
通过中心体扩增抑制高度侵袭性乳腺癌的肿瘤生长和转移
- 批准号:
10670436 - 财政年份:2022
- 资助金额:
$ 40.62万 - 项目类别:
Inhibiting tumor growth and metastasis in highly aggressive breast cancers with centrosome amplification
通过中心体扩增抑制高度侵袭性乳腺癌的肿瘤生长和转移
- 批准号:
10621529 - 财政年份:2022
- 资助金额:
$ 40.62万 - 项目类别:
Nanomechanical studies of cells and biomolecules
细胞和生物分子的纳米力学研究
- 批准号:
10406574 - 财政年份:2022
- 资助金额:
$ 40.62万 - 项目类别:
Overcoming chemoresistance in triple negative breast cancer
克服三阴性乳腺癌的化疗耐药性
- 批准号:
10345694 - 财政年份:2021
- 资助金额:
$ 40.62万 - 项目类别:
Inhibiting tumor growth and metastasis in highly aggressive breast cancers with centrosome amplification
通过中心体扩增抑制高度侵袭性乳腺癌的肿瘤生长和转移
- 批准号:
10298311 - 财政年份:2021
- 资助金额:
$ 40.62万 - 项目类别:
Overcoming chemoresistance in triple negative breast cancer
克服三阴性乳腺癌的化疗耐药性
- 批准号:
10541879 - 财政年份:2021
- 资助金额:
$ 40.62万 - 项目类别:
Overcoming chemoresistance in triple negative breast cancer
克服三阴性乳腺癌的化疗耐药性
- 批准号:
10642470 - 财政年份:2021
- 资助金额:
$ 40.62万 - 项目类别:
Nanomechanical imaging of protein dynamics via programmable DNA interactions
通过可编程 DNA 相互作用进行蛋白质动力学纳米力学成像
- 批准号:
10020421 - 财政年份:2019
- 资助金额:
$ 40.62万 - 项目类别:
Nanomechanical imaging of protein dynamics via programmable DNA interactions
通过可编程 DNA 相互作用进行蛋白质动力学纳米力学成像
- 批准号:
10217200 - 财政年份:2019
- 资助金额:
$ 40.62万 - 项目类别:
相似国自然基金
基于原子力显微镜探讨肝纤维化动态进展中黏弹性生物力学基础
- 批准号:82202191
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气细颗粒物中纳米微塑料的原子力显微镜-拉曼成像鉴定及污染特征分析
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
基于原子力显微镜的动态交联聚合物共价键解离/键合、链段松弛动力学及界面粘结研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于小角散射和原子力显微镜研究多因素诱导纳米TATB自聚长大机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于原子力显微镜与深度神经网络训练的巨噬细胞生物力学的研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 40.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 40.62万 - 项目类别:
Research Grant
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 40.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 40.62万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 40.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)