Preclinical Genome Editing for Rare Neurological Diseases
罕见神经系统疾病的临床前基因组编辑
基本信息
- 批准号:10668762
- 负责人:
- 金额:$ 426.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-16 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAreaAtaxiaBiodistributionCRISPR/Cas technologyCellsCentral Nervous System DiseasesChildhoodClinicalCommunicationDNA Double Strand BreakDataDevelopmentDiagnosisDiagnosticDiseaseDoseDrug KineticsDrug PackagingFamilyFinding by CauseFriedreich AtaxiaFutureGenesGeneticGenetic DiseasesGenomeGoalsHealth SciencesHigh-Throughput Nucleotide SequencingHuntington DiseaseIn VitroIndividualInvestigational DrugsInvestigational New Drug ApplicationKnowledgeLifeMedical GeneticsMedicineModelingModificationMonitorNervous SystemNeurologicNeuronsOncogenicOutcomePathway interactionsPatientsPharmacology StudyPhenotypePopulationPositioning AttributeProductionPropertyPublic HealthRare DiseasesReproducibilityResearchResearch PersonnelResearch Project GrantsResourcesRett SyndromeRiskRouteSafetySchemeSpinal Muscular AtrophyTechnologyTherapeuticTherapeutic IndexTissuesToxicologyTranslatingTranslationsTreatment EfficacyValidationVariantbasebase editingbase editorclinical diagnosticsdelivery vehicleeffective therapyexome sequencinggene replacementgene therapygenome editinghuman diseaseimmunogenicityimprovedin vivoinnovationlead candidatelead optimizationmanufacturabilitymembermouse modelmultidisciplinarynervous system disordernucleasepharmacokinetics and pharmacodynamicspostmitoticpre-Investigational New Drug meetingpre-clinicalpreclinical evaluationprime editorprogramsrare genetic disorderrepairedresponsesuccesstherapeutic candidatetherapeutic genome editingtooltranslational therapeutics
项目摘要
PROJECT SUMMARY OVERALL
While the development of high-throughput sequencing technology and its application to clinical diagnostics has
yielded the genetic basis for many rare genetic diseases, the development of effective treatments has not kept
pace. Although gene replacement and modulation therapies can be powerful, sometimes even lifesaving
treatment options, they come with many risks, such as immunogenicity and oncogenicity. Programmable
nucleases such as CRISPR/Cas9 have revolutionized our ability to manipulate the genome, and provide the
potential to achieve lasting, precise genome modification for therapeutic benefit. The proposed U19 program
seeks to address these challenges through the development, validation and translation of gene editing–
based therapeutic solutions for rare neurological genetic diseases. We propose to focus on four
neurological conditions that each represent a significant unmet clinical need: Spinal Muscular Atrophy,
Friedrich's Ataxia, Huntington's Disease, and Rett Syndrome. Members of our team have developed a suite of
base and prime genome editing tools that can install precise alterations without creating a DSB or requiring a
donor template. We also have developed validated in vivo mouse models for each of these diseases and bring
deep expertise in the IND-enabling preclinical evaluation of gene-editing therapeutics. We propose to merge
these considerable assets with disease-specific expertise in each of the four neurological conditions, supported
by expertise and resources for scaled production of AAV-based delivery vectors for delivery of precision gene-
editing therapies to tissues, and for navigating the regulatory path to IND submission. The proposed U19 team
has a track record of individual and collaborative success at every step of the preclinical pipeline pathway and
is thus well positioned to achieve our milestones, which include an IND package submitted to FDA for at least
one therapy and neurological condition. Our Overall Aims are to: 1) Assemble a multi-disciplinary team with
unique strengths and expertise to develop and implement innovative genome editing strategies to address
important disease of the CNS, including Spinal Muscular Atrophy, Friedreich's Ataxia, Huntington's Disease, and
Rett Syndrome; 2) Optimize lead base editor and prime editor candidates for each disease area, utilizing in vitro
platforms and validated animal models; 3) Execute definitive preclinical in vivo pharmacology studies on
optimized leads to develop reproducible efficacy data, while monitoring biodistribution, PK/PD, tolerability, and
toxicology; and 4) Advance one lead candidate to an allowable investigational new drug (IND) application through
coordinated communication with the FDA INTERACT program, the research project team, and the project Cores.
总体项目摘要
而高通量测序技术的发展及其在临床诊断中的应用
产生了许多罕见遗传疾病的遗传基础,有效治疗的发展尚未保持
尽管替代基因和调节疗法可能很强大,有时甚至可以挽救生命
治疗选择,它们具有许多风险,例如免疫原性和致癌性。可编程
诸如CRISPR/CAS9之类的核酸酶已经彻底改变了我们操纵基因组的能力,并提供了
实现持久,精确的基因组修饰以实现治疗益处的潜力。拟议的U19程序
试图通过基因编辑的发展,验证和翻译来应对这些挑战 -
基于稀有神经系统遗传疾病的治疗溶液。我们建议专注于四个
每种神经系统疾病都代表着重要的未满足临床需求:脊柱肌肉萎缩,
弗里德里希的共济失调,亨廷顿氏病和RETT综合征。我们团队的成员已经开发了一套
基础和主要基因组编辑工具,可以安装精确更改而无需创建DSB或需要
捐助者模板。我们还为每种疾病开发了经过验证的体内鼠标模型并带来
基因编辑疗法的临床前评估方面的深厚专业知识。我们建议合并
这些大量资产在四种神经系统疾病中的每一个中都具有特定于疾病的专业知识,
通过专业知识和资源来扩展基于AAV的交付向量,以提供精确基因
对组织进行编辑疗法,并为导航提供IND提交的监管途径。拟议的U19团队
在临床前管道途径的每个步骤中都有个人和协作成功的记录,
因此,在实现我们的里程碑方面的位置很好,其中包括提交给FDA的IND包裹
一种疗法和神经系统状况。我们的总体目的是:1)与
独特的优势和专家,以开发和实施创新的基因组编辑策略来解决
中枢神经系统的重要疾病,包括脊柱肌肉萎缩,弗里德里希的共济失调,亨廷顿氏病和
RETT综合征; 2)使用体外优化每个疾病区域的主要基础编辑器和主要编辑候选者
平台和经过验证的动物模型; 3)执行有关体内药理学的确定性临床前研究
优化的引线可以开发可再现效率数据,同时监视生物分布,PK/PD,耐受性和
毒理学; 4)通过
与FDA Interact计划,研究项目团队和项目核心协调沟通。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mandana Arbab其他文献
Mandana Arbab的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mandana Arbab', 18)}}的其他基金
Project 1: Therapeutic Gene Editing for Spinal Muscular Atrophy (Trailblazer)
项目1:脊髓性肌萎缩症的治疗性基因编辑(Trailblazer)
- 批准号:
10668767 - 财政年份:2023
- 资助金额:
$ 426.2万 - 项目类别:
Precision Base Editing for the Treatment of Motor Neuron Diseases
精确碱基编辑治疗运动神经元疾病
- 批准号:
10456923 - 财政年份:2021
- 资助金额:
$ 426.2万 - 项目类别:
Precision base editing for the treatment of motor neuron diseases
精准碱基编辑治疗运动神经元疾病
- 批准号:
10301562 - 财政年份:2021
- 资助金额:
$ 426.2万 - 项目类别:
Precision Base Editing for the Treatment of Motor Neuron Diseases
精确碱基编辑治疗运动神经元疾病
- 批准号:
10703727 - 财政年份:2021
- 资助金额:
$ 426.2万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 426.2万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 426.2万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 426.2万 - 项目类别:
Pulmonary Hypertension: State of the Art and Therapeutic Opportunities
肺动脉高压:最新技术和治疗机会
- 批准号:
10682118 - 财政年份:2023
- 资助金额:
$ 426.2万 - 项目类别: