Temporal Phenotypes and Risk Models for the Post-COVID Syndrome and its sub-types
新冠肺炎后综合症及其亚型的时间表型和风险模型
基本信息
- 批准号:10666655
- 负责人:
- 金额:$ 81.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccountingAcuteAddressAffectAnxietyAppointmentCOVID-19COVID-19 diagnosticCOVID-19 long haulerCOVID-19 pandemicCOVID-19 patientCaringCharacteristicsChest PainChicagoChronicClinicalClinical DataCodeCollectionComputational algorithmCoughingDataDecision MakingDiagnosisDiagnosticDigital biomarkerDiseaseDisparityDyspneaEarly identificationElectronic Health RecordEtiologyFatigueFutureGenerationsHealthHealthcare SystemsHospitalsImageIncomeInfectionInformaticsInstitutionInternational Classification of DiseasesInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)KentuckyKnowledgeLabelLaboratoriesLearningLong COVIDMedicalMemory impairmentMental DepressionMethodologyMethodsModelingMutationNamesNeurocognitiveNew EnglandOrganPatientsPersonsPhasePhenotypePhiladelphiaPopulationPost-Acute Sequelae of SARS-CoV-2 InfectionPost-Traumatic Stress DisordersPredisposing FactorPreparationProceduresPrognosisPublic HealthPulmonary function testsPulmonologyRampRecoveryResearchResolutionRiskRisk FactorsSARS-CoV-2 infectionSentinelSeveritiesSideSigns and SymptomsSilverSiteStrategic PlanningStructureSymptomsSystemTestingTherapeuticTimeUncertaintyUnited States National Institutes of HealthUpdateVaccinatedVaccinationVaccinesVirusVirus DiseasesWorkacute infectioncohortcoronavirus diseasecostdata modelingepidemiologic datafightingimprovedinformatics toolinsightmembermultidisciplinarymultimodal datanovelpandemic diseasepatient populationpost-COVID-19psychologicrepositorytool
项目摘要
Project Summary/Abstract
The fight against the SARS-CoV-2, the coronavirus that causes COVID-19, is ramping up with vaccinations and
therapeutics. Yet there is a growing urgency to study and address the other side of the pandemic, a shapeshifting
byproduct known as the post-acute sequelae of COVID-19 (PASC), among other names. Even if several millions
are successfully vaccinated against the virus, many more are still likely to be infected and for hundreds of
thousands (if not millions) of those, recovery from the acute phase of COVID-19 infection will be grueling with a
debilitating second act. A collection of persistent physical (e.g., fatigue, dyspnea, chest pain, cough),
psychological (e.g., anxiety, depression, post-traumatic stress disorder), and neurocognitive symptoms (e.g.,
impaired memory and concentration) can appear and last for weeks or months in patients after acute COVID-
19, impeding their ability to function normally and costing the U.S. economy billions of dollars annually in medical
bills and lost incomes. However, little is known about the post-acute sequelae of COVID-19, the extent and
causes of its lingering health issues, which patients might develop them, and how to address them. We seek to
leverage electronic health records (EHRs) data from 7 hospital systems across the U.S. to develop and validate
a novel framework for studying evolving temporal phenotypes of the post-acute sequelae of COVID-19. For a
period of four years after each patient’s SARS-CoV-2 infection, we will track their clinical data, including clinical
notes and laboratory tests recorded in EHR notes to Curate validated cohorts with gold-standard, rule-based,
and silver-standard (computationally interpolated) labels for PASC phenotypes (Aim 1). We will utilize these
cohorts to develop and validate consistent and interpretable cohort identification and risk models of PASC
phenotypes, accounting for temporal ordering and progression of evolving phenotypes over time (Aim 2). Finally,
we will evaluate the generalizability the PASC models to develop a framework for modeling evolving temporal
phenotypes with EHR data through an objective methodology for evaluating bias in medical AI. (Aim 3). This
study will yield new knowledge regarding the phenotypic characteristics of the post-acute effects following known
SARS-CoV-2 infection and the underlying drivers that influence their presentation and onset. The novel
framework for studying evolving PASC phenotypes will capture and characterize new PASC problems that may
present 2-3 years post-acute infection and update risk models. Given uncertainties around the efficacy of current
vaccines against future mutations, the proposed learning systems will improve our capacity for adaptive
pandemic decision-making. Finally, the framework and underlying methodology developed in this study will lend
insights towards understanding persistent sequelae of other known/suspected viral infections and modeling other
evolving temporal phenotypes.
项目摘要/摘要
与SARS-COV-2(导致Covid-19的冠状病毒病毒)与SARS-COV-2的斗争正在加强疫苗接种和
疗法。然而,越来越紧迫地研究和解决大流行的另一端,这是一个变形的
副产品被称为covid-19(PASC)的急性后遗症,以及其他名称。即使数百万
已成功接种该病毒,还有更多的可能被感染,数百种
其中成千上万的(如果不是数百万),从COVID-19感染的急性阶段恢复将是艰苦的
衰弱的第二幕。持续的身体(例如疲劳,呼吸困难,胸痛,咳嗽)的集合,
心理学(例如焦虑,抑郁,创伤后应激障碍)和神经认知症状(例如,
急性共卷后,患者可能会出现并持续数周或数月的记忆和浓度受损)
19,阻碍他们正常运作的能力,每年在医疗中损失数十亿美元的经济
账单和损失的收入。但是,关于covid-19的急性后遗症,程度和程度和
其挥之不去的健康问题的原因,患者可能会发展出来以及如何解决这些问题。我们寻求
利用来自美国7个医院系统的电子健康记录(EHRS)数据来开发和验证
研究Covid-19的急性后遗症不断发展的临时表型的新型框架。对于
每个患者的SARS-COV-2感染后四年,我们将跟踪他们的临床数据,包括临床
EHR注释中记录的注释和实验室测试,以策划经过金标准的基于规则的金标准,
以及用于PASC表型的银标准(计算插值)标签(AIM 1)。我们将利用这些
共同开发和验证PASC的一致且可解释的队列识别和风险模型的队列
表型,随着时间的流逝,临时排序和进化表型的进展(AIM 2)。最后,
我们将评估PASC模型的普遍性,以开发建模临时性的框架
具有EHR数据的表型通过客观方法来评估医学AI的偏差。 (目标3)。这
研究将产生有关已知后急性后作用的表型特征的新知识
SARS-COV-2感染以及影响其表现和发作的潜在驱动因素。小说
研究不断发展的PASC表型的框架将捕获并表征可能的新PASC问题
目前急性感染后2 - 3年更新风险模型。鉴于围绕当前效率的不确定性
反对未来突变的疫苗,拟议的学习系统将提高我们的适应性能力
大流行决策。最后,本研究中开发的框架和基础方法将借出
了解其他已知/怀疑的病毒感染的持续后遗症的见解,并建模其他
不断发展的临时表型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Severity of COVID-19-Related Illness in Massachusetts, July 2021 to December 2022.
- DOI:10.1001/jamanetworkopen.2023.8203
- 发表时间:2023-04-03
- 期刊:
- 影响因子:13.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hossein Estiri其他文献
Hossein Estiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Mitoquinone/mitoquinol mesylate as oral and safe Postexposure Prophylaxis for Covid-19
米托醌/甲磺酸米托喹诺作为 Covid-19 的口服且安全的暴露后预防
- 批准号:
10727092 - 财政年份:2023
- 资助金额:
$ 81.81万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 81.81万 - 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 81.81万 - 项目类别:
Characterizing persistent subclinical neurobehavioral effects of COVID-19 in a diverse urban population
表征 COVID-19 对不同城市人群的持续亚临床神经行为影响
- 批准号:
10445841 - 财政年份:2022
- 资助金额:
$ 81.81万 - 项目类别:
Innate and adaptive defenses against SARS-COV-2 in the oral cavity during acute unvaccinated and breakthrough infections
急性未接种疫苗和突破性感染期间口腔针对 SARS-COV-2 的先天和适应性防御
- 批准号:
10667248 - 财政年份:2022
- 资助金额:
$ 81.81万 - 项目类别: