Dissecting the role and mechanism of EML4-ALK condensates in oncogenic signaling and tumor growth
剖析 EML4-ALK 缩合物在致癌信号和肿瘤生长中的作用和机制
基本信息
- 批准号:10634392
- 负责人:
- 金额:$ 67.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-11 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:ALK geneAdaptor Signaling ProteinApplications GrantsArchitectureBiologicalBiologyCancer ControlCancer EtiologyCancer PatientCellsChimeric ProteinsClinicalComplementComplexCytoplasmic GranulesCytoplasmic ProteinDataDevelopmentDrug resistanceEpidermal Growth Factor ReceptorFoundationsFusion Oncogene ProteinsFutureGene RearrangementGeneticGoalsGrowthHistologicLung AdenocarcinomaMAP Kinase GeneMalignant NeoplasmsMalignant neoplasm of lungMembraneMembrane LipidsMethodologyMolecularMutagenesisNon-Small-Cell Lung CarcinomaOncogenicOncoproteinsOutcomeOutputPathogenicityPathway interactionsPatientsPhasePhenotypePhosphotransferasesPhysical condensationProteinsProteomicsReceptor Protein-Tyrosine KinasesRecurrenceRoleSet proteinSignal TransductionTestingTherapeuticVariantWorkanaplastic lymphoma kinasecancer cellclinically relevantdesigngenetic approachgrowth factor receptor-bound protein 2improvedinnovationinsightkinase inhibitormortalitymultidisciplinarymutantprecision medicineprotein expressionrecruitresponsetooltreatment strategytumor growth
项目摘要
PROJECT ABSTRACT. Lung cancer is the leading cause of cancer mortality worldwide, with non-small cell lung
cancer (NSCLC) the predominant histologic subtype of lung cancer and lung adenocarcinoma the major subset
of NSCLC. ALK gene rearrangements (e.g., EML4-ALK fusions) are validated targets in NSCLC and current ALK
kinase inhibitors yield impressive responses. Despite this clinical progress drug resistance remains a problem
that limits patient survival. Improved therapeutic strategies are critical to identify to improve clinical outcomes.
We propose an innovative, multidisciplinary, and collaborative project to hopefully improve the survival of NSCLC
patients by defining a new mechanism of oncogenic signaling that we uncovered by studying ALK fusion
oncoproteins. We aim to capitalize on our discovery of membraneless cytoplasmic protein granules
(condensates) as a distinct mechanism of oncogenic kinase signaling in cancer. Our data suggest an emerging
paradigm in which certain ALK fusion oncoproteins, as well as other clinically-relevant oncoprotein kinase fusions
such as RET fusions, form de novo their own phase separated protein-based subcellular compartment devoid
of lipid membranes and utilize higher-order protein assembly as distinguishing principles underlying oncogenic
output. These membraneless cytoplasmic protein granules comprise a mode of oncogenic signaling that is
different from that of native receptor tyrosine kinase (RTK) signaling and oncogenic, mutant forms of other RTKs
such as EGFR, which use classical lipid membrane-based signaling. The pathogenic biomolecular condensates
formed by ALK (and other RTK) fusion oncoproteins locally concentrate the RAS activating complex GRB2/SOS1
and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for
oncogenic RAS/MAPK signaling output in cells. We identified a set of protein granule signaling components and
established structural rules that define ALK protein granule formation. For instance, protein granule formation
requires the adaptor proteins GRB2 and SHC, in addition to the ALK fusion oncoprotein. Our findings reveal
membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing
oncogenic RTK and RAS signaling in cancer. We propose 2 complementary Specific Aims using innovative
methodologies to probe condensate biology to understand the role of phase separation in ALK fusion oncogenic
signaling. We further define the protein architecture of ALK fusion protein granules and identify the key interacting
proteins required for ALK fusion protein granule formation, oncogenic signaling and tumor growth. The proposed
studies will establish a mechanistic understanding of RTK fusion condensate biology to lay a firm foundation for
the future design of mechanism-based therapeutic strategies to interfere with ALK protein granule assembly per
se and that complement conventional ALK-targeted clinical agents, which are ALK kinase inhibitors. This project
will provide insight into this distinct form of oncogenic signaling with a focus on ALK, with broader implications
for the understanding of condensate and RTK fusion biology and the design of differentiated treatment strategies.
项目摘要。肺癌是全球癌症死亡率的主要原因,非小细胞肺
癌症(NSCLC)肺癌和肺腺癌的主要组织学亚型主要子集
NSCLC。 ALK基因重排(例如EML4-Alk融合)是NSCLC和电流ALK中的验证靶标
激酶抑制剂产生令人印象深刻的反应。尽管这种临床进度耐药性仍然是一个问题
这限制了患者的生存。改进的治疗策略对于确定改善临床结果至关重要。
我们提出了一个创新,多学科和协作的项目,以希望改善NSCLC的生存
通过定义一种新的致癌信号传导机制,我们通过研究ALK融合而发现了患者
癌蛋白。我们旨在利用我们发现无膜细胞质蛋白颗粒的发现
(冷凝)是癌症中致癌激酶信号传导的独特机制。我们的数据表明了一个新兴
其中某些ALK融合癌蛋白以及其他临床上与癌蛋白激酶融合的范式
例如ret融合,从头形成自己的相位分离基于蛋白质的亚细胞室脱离
脂质膜并利用高阶蛋白质组装作为区分致癌原理
输出。这些无膜细胞质蛋白颗粒包括一种致癌信号的模式
与天然受体酪氨酸激酶(RTK)信号传导和其他RTK的突变形式不同的不同
例如EGFR,使用经典的脂质膜信号传导。致病性生物分子冷凝水
由ALK(和其他RTK)融合癌蛋白局部浓缩Ras激活复合物GRB2/SOS1形成
并以脂质膜无关的方式激活RAS。 RTK蛋白颗粒的形成对于
细胞中的致癌RAS/MAPK信号输出。我们确定了一组蛋白质颗粒信号传导成分和
建立的结构规则定义了碱蛋白颗粒的形成。例如,蛋白质颗粒形成
除了ALK融合癌蛋白外,还需要衔接蛋白GRB2和SHC。我们的发现揭示了
膜的无阶高质质蛋白质组装作为一个独特的亚细胞平台
癌症中的致癌RTK和RAS信号传导。我们建议使用创新的2个补充特定目标
探测凝结生物学的方法论,以了解相位分离在ALK融合致癌中的作用
信号。我们进一步定义了ALK融合蛋白颗粒的蛋白质结构,并确定关键相互作用
ALK融合蛋白颗粒形成,致癌信号传导和肿瘤生长所需的蛋白质。提议
研究将建立对RTK融合凝结生物学的机械理解,以奠定坚定的基础
基于机制的治疗策略的未来设计,以干扰ALK蛋白颗粒组件
SE并补充了常规的ALK靶向临床剂,它们是ALK激酶抑制剂。这个项目
将提供对这种不同形式的致癌信号传导的见解,重点是ALK,具有更广泛的影响
为了了解冷凝水和RTK融合生物学以及分化治疗策略的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trever G Bivona其他文献
Trever G Bivona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trever G Bivona', 18)}}的其他基金
(PQ7) Defining a new mode of RAS signaling in cancer from cytoplasmic protein granules
(PQ7)从细胞质蛋白颗粒定义癌症中RAS信号传导的新模式
- 批准号:
10431980 - 财政年份:2019
- 资助金额:
$ 67.02万 - 项目类别:
(PQ7) Defining a new mode of RAS signaling in cancer from cytoplasmic protein granules
(PQ7)从细胞质蛋白颗粒定义癌症中RAS信号传导的新模式
- 批准号:
9903267 - 财政年份:2019
- 资助金额:
$ 67.02万 - 项目类别:
(PQ7) Defining a new mode of RAS signaling in cancer from cytoplasmic protein granules
(PQ7)从细胞质蛋白颗粒定义癌症中RAS信号传导的新模式
- 批准号:
10183196 - 财政年份:2019
- 资助金额:
$ 67.02万 - 项目类别:
(PQ7) Defining a new mode of RAS signaling in cancer from cytoplasmic protein granules
(PQ7)从细胞质蛋白颗粒定义癌症中RAS信号传导的新模式
- 批准号:
10634610 - 财政年份:2019
- 资助金额:
$ 67.02万 - 项目类别:
Clinical specimen tumor-TME acquired resistance
临床标本肿瘤-TME获得性耐药
- 批准号:
10517260 - 财政年份:2017
- 资助金额:
$ 67.02万 - 项目类别:
BAY AREA & ANDERSON TEAM AGAINST ACQUIRED RESISTANCE - U54 PROGRAM (BAATAAR-UP)
海湾地区
- 批准号:
10517257 - 财政年份:2017
- 资助金额:
$ 67.02万 - 项目类别:
Clinical specimen tumor-TME acquired resistance
临床标本肿瘤-TME获得性耐药
- 批准号:
10705122 - 财政年份:2017
- 资助金额:
$ 67.02万 - 项目类别:
Characterization of YAP as a rational companion target in lung cancer
YAP 作为肺癌合理伴随靶点的特征
- 批准号:
10365912 - 财政年份:2017
- 资助金额:
$ 67.02万 - 项目类别: