Advancing the design, analysis, and interpretation of acute respiratory distress syndrome trials using modern statistical tools

使用现代统计工具推进急性呼吸窘迫综合征试验的设计、分析和解释

基本信息

  • 批准号:
    10633978
  • 负责人:
  • 金额:
    $ 77.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Acute respiratory distress syndrome (ARDS) is a common and devastating cause of acute respiratory failure. There are 200,000 annual ARDS cases in the U.S. (2.5-5 million globally), which account for 60,000 deaths and enormous physical, cognitive, and psychosocial morbidity among survivors. Yet, despite more than 200 randomized clinical trials (RCTs), only two interventions – low-tidal-volume ventilation and prone positioning – have definitively improved outcomes using a traditional frequentist, null hypothesis, p-value-based trial design and analysis. The research team contends that assessing data in this framework may overlook informative trial data and delay or thwart the identification of promising therapies, especially when p-values fall just short of the 0.05 threshold, which has occurred in several major ARDS trials. As an alternative methodological approach to maximize the clinical insight gained from RCTs, the team will reanalyze 29 international and NHLBI-funded ARDS RCTs that enrolled more than 15,000 individuals using Bayesian causal inference and machine learning methods they have developed and validated. Most therapies they will examine are either low-cost or easily implemented practices and thus have the potential for high impact (e.g., ventilator settings, fluid management, corticosteroids, statins, beta-agonists, vitamin D). In Aim 1, instead of using statistical significance, they will quantify the probability of a beneficial treatment effect and its probable magnitude. That is, instead of using a pre-specified p-value to determine whether an intervention has at least the hypothesized mortality benefit, they will derive the probability that a given therapy is associated with clinically relevant absolute mortality reductions of at least 2%, 4%, and 6%. They will examine each intervention with noninformative Bayesian ‘priors’ and then with standardized and meta-analysis-derived priors to reduce subjectivity and interrogate clinical efficacy across the spectrum of harm and benefit possibilities. In Aim 2, they will use Bayesian Additive Regression Trees (BART) formulations they developed to understand which ARDS patient types are most likely to benefit from, or be harmed by, a therapy, i.e., so-called ‘heterogeneity of treatment effect’ (HTE). Unlike prior HTE research in ARDS, their approach does not focus on one-by-one, binary splits of characteristics but rather can identify complex, multivariable, nonlinear treatment effect modification. Aim 2a will focus on mortality and adverse events. Aim 2b will apply a novel BART variation to identify HTE in outcomes such as ventilator duration or hospital stay whose observation is truncated by death. By estimating causal effects on these outcomes among always-survivors, their new method avoids biases associated with prior approaches, enabling accurate identification of clinically meaningful subgroups. Aim 3 focuses on developing and disseminating free, cloud-based software to support future ARDS trials. This work promises to improve the value of the knowledge gained from past and future ARDS RCTs by identifying truly beneficial treatments and informing how these therapies can be individually tailored for this high-mortality, high-morbidity syndrome.
项目摘要/摘要 急性呼吸窘迫综合征(ARDS)是急性呼吸衰竭的常见且毁灭性的原因。 美国有200,000例年度ARDS病例(全球2500万),造成60,000人死亡 以及生存之间的巨大身体,认知和社会心理发病率。但是,dospite超过200 随机临床试验(RCT),只有两种干预措施 - 低潮汐通风和易于定位 - 使用传统的频率主义者,零假设,基于p值的试验设计,已最终改善了结果 和分析。研究小组涉及在此框架中评估数据可能会忽略内容丰富的试验 数据和延迟或阻碍了承诺疗法的识别,尤其是当p值仅落在 0.05阈值,发生在几项主要的ARDS试验中。作为替代方法论方法 最大化从RCT中获得的临床见解,该团队将重新分析29国际和NHLBI资助 使用贝叶斯因果推理和机器学习招募了15,000多名个人的ARDS RCT 他们开发和验证的方法。他们将检查的大多数疗法是低成本或容易 实施实践,因此具有高影响力(例如,呼吸机设置,流体管理, 皮质类固醇,他汀类药物,β-激动剂,维生素D)。在AIM 1中,而不是使用统计意义,他们将 量化有益治疗效果的可能性及其有问题的幅度。也就是说,而不是使用 预先指定的p值确定干预措施是否至少具有假设的死亡率,它们 将得出给定疗法与临床相关的绝对死亡率降低相关的概率 至少2%,4%和6%。他们将使用非信息贝叶斯的“先验”检查每种干预措施,然后 具有标准化和荟萃分析衍生的先验,以降低主观性并询问临床效率 跨越危害和利益潜力。在AIM 2中,他们将使用贝叶斯添加剂回归 他们开发的树木(BART)公式以了解哪种ARDS患者类型最有可能受益 从或受到一种疗法的伤害,即所谓的“治疗效果异质性”(HTE)。与先前的HTE不同 ARDS的研究,他们的方法并不集中于一对一的,特征的二元分裂,而是可以 确定复杂的,多变量的非线性治疗效果修饰。 AIM 2A将专注于死亡率和 不利事件。 AIM 2B将应用新颖的BART变体,以识别诸如呼吸机等结果中的HTE 持续时间或住院,其观察被死亡截断。通过估计对这些因果的影响 在始终活跃者中的结果,他们的新方法避免了与先前方法相关的偏见, 能够准确识别临床上有意义的亚组。 AIM 3专注于发展和 传播基于云的免费软件,以支持未来的ARDS试验。这项工作有望改善 通过确定真正有益的治疗和 告知这些疗法如何针对这种高病态,高病症综合征的单独定制。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of sceptical priors on the performance of adaptive clinical trials with binary outcomes.
  • DOI:
    10.1002/pst.2387
  • 发表时间:
    2024-03-29
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Granholm,Anders;Lange,Theis;Kaas-Hansen,Benjamin Skov
  • 通讯作者:
    Kaas-Hansen,Benjamin Skov
Causal interpretation of the hazard ratio in randomized clinical trials.
随机临床试验中风险比的因果解释。
Reply to Heitjan's commentary.
回复 Heitjan 的评论。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Oscar Harhay其他文献

Michael Oscar Harhay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Oscar Harhay', 18)}}的其他基金

Phenotyping ARDS, Pneumonia, and Sepsis over time to elucidate shared and distinct trajectories ofillness and recovery
随着时间的推移对 ARDS、肺炎和脓毒症进行表型分析,以阐明共同和不同的疾病和康复轨迹
  • 批准号:
    10649194
  • 财政年份:
    2023
  • 资助金额:
    $ 77.97万
  • 项目类别:
Improving the measurement and analysis of long-term, patient-centered outcomes following acute respiratory failure
改善急性呼吸衰竭后以患者为中心的长期结果的测量和分析
  • 批准号:
    10370292
  • 财政年份:
    2018
  • 资助金额:
    $ 77.97万
  • 项目类别:
Improving the measurement and analysis of long-term, patient-centered outcomes following acute respiratory failure
改善急性呼吸衰竭后以患者为中心的长期结果的测量和分析
  • 批准号:
    10064003
  • 财政年份:
    2018
  • 资助金额:
    $ 77.97万
  • 项目类别:
Methods to improve the detection of treatment effects in ARDS clinical trials
改善 ARDS 临床试验中治疗效果检测的方法
  • 批准号:
    8907567
  • 财政年份:
    2015
  • 资助金额:
    $ 77.97万
  • 项目类别:

相似海外基金

Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
  • 批准号:
    10648387
  • 财政年份:
    2023
  • 资助金额:
    $ 77.97万
  • 项目类别:
Understanding and targeting fibroblast activation in influenza-triggered lung inflammation and post-viral disease
了解和靶向流感引发的肺部炎症和病毒后疾病中的成纤维细胞激活
  • 批准号:
    10717809
  • 财政年份:
    2023
  • 资助金额:
    $ 77.97万
  • 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
  • 批准号:
    10748433
  • 财政年份:
    2023
  • 资助金额:
    $ 77.97万
  • 项目类别:
Novel mechanisms regulating immunity to respiratory virus infection
调节呼吸道病毒感染免疫力的新机制
  • 批准号:
    10753849
  • 财政年份:
    2023
  • 资助金额:
    $ 77.97万
  • 项目类别:
Inducible HMGB1 antagonist for viral-induced acute lung injury.
诱导型 HMGB1 拮抗剂,用于治疗病毒引起的急性肺损伤。
  • 批准号:
    10591804
  • 财政年份:
    2023
  • 资助金额:
    $ 77.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了