Engineering cell type-specific splicing regulation
工程细胞类型特异性剪接调控
基本信息
- 批准号:10633765
- 负责人:
- 金额:$ 39.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Algorithm DesignAlternative SplicingAnimalsBiological AssayBiologyBrainCell LineCellsCodeDataDevelopmentDiseaseEngineeringFutureGene ExpressionGenesGeneticHigh-Throughput Nucleotide SequencingHuman Cell LineIntronsLearningLibrariesMachine LearningMapsMeasuresModelingMolecularMouse Cell LineMutationNeurobiologyPrimary Cell CulturesProductionProtein IsoformsProteinsRNA SplicingRNA-Binding ProteinsRat Cell LineRattusReadingRegulationRegulatory ElementReporterReporter GenesResearchRoleSliceSpecificitySystemTestingTissuesTrainingVariantWorkbiological systemscancer cellcell typeconvolutional neural networkdesigndisease diagnosisexon skippinggene therapyimprovedinsightinterestmachine learning modelnetwork architecturenovelnovel strategiespredictive modelingprotein expressionrecurrent neural networkside effectsingle cell analysissingle-cell RNA sequencingsynthetic biologytherapeutic genetooltranscriptome
项目摘要
PROJECT SUMMARY
Alternative splicing (AS) is a major driver of protein isoform diversity and is regulated in a highly cell
type-specific manner. A better understanding of the cell type-specific splicing code will not only provide novel
insights into the role of alternative splicing in disease and development but will also result in novel genetic tools
for perturbing and interrogating cell types of interest. Synthetic splicing constructs have been successfully used
to target activation of reporter and therapeutic genes to cancer cells carrying mutations in splice factors or to
make gene therapies conditional on a small molecular trigger. Existing examples highlight the potential of AS
as a programmable control mechanism but do not provide a clear path towards engineering splice regulatory
sequences that can be used to target gene expression to any desired cell type or state. Here, we propose to
combine synthetic biology with machine learning to generate highly cell type-specific splicing constructs.
Building on our earlier work, we will first quantify cell type-specific AS using splicing massively parallel reporter
assays (MPRAs). We will focus on exon skipping and intron retention because they are among the most
common forms of AS and can be highly cell type-specific. For each type of AS, we will create libraries with
hundreds of thousands or even millions of reporters with variation targeted to regions of interest. We will then
measure AS for these libraries in a panel of cell lines and cultured primary cells (Specific Aim 1). Next, we will
use these data to train machine learning models that can accurately predict AS isoform abundance from
reporter gene sequence. We will systematically compare different network architectures and approaches
including convolutional and recurrent neural networks. We will then combine models with sequence design
approaches previously developed in the lab to generate synthetic sequences with enhanced target cell
specificity. We aim to show that we can generate reporter constructs that are specific to any cell type in our
panel. We will validate predictions experimentally and use resulting data to iteratively improve model
predictions (Specific Aim 2). Finally, we will generalize our approach to an experimental setting that more
accurately reflects the diversity and complexity of cell types encountered in multi-cellular biological systems.
Specifically, we will perform splicing MPRAs in organotypic developing rat brain slice culture. We will optimize
conditions for library delivery to slice culture and we will similarly optimize approaches for reading out splicing
MPRAs at the single cell level. We will combine the resulting data with the generative models from Specific Aim
1 to design reporter constructs that precisely target protein expression to cell types of interest (Specific Aim
3). We believe that this work will result in novel genetic tools for biology research and provide a path towards
gene therapies with increased specificity and reduced side effects.
项目概要
选择性剪接 (AS) 是蛋白质亚型多样性的主要驱动因素,并在高度细胞中受到调节
特定于类型的方式。更好地理解细胞类型特异性剪接代码不仅会提供新颖的
深入了解选择性剪接在疾病和发育中的作用,同时也将产生新的遗传工具
用于干扰和询问感兴趣的细胞类型。合成剪接构建体已被成功使用
将报告基因和治疗基因的激活靶向携带剪接因子突变的癌细胞或
使基因疗法以小分子触发为条件。现有的例子凸显了 AS 的潜力
作为一种可编程控制机制,但没有为工程接头监管提供明确的途径
可用于将基因表达靶向任何所需细胞类型或状态的序列。在此,我们建议
将合成生物学与机器学习相结合,生成高度细胞类型特异性的剪接结构。
在我们早期工作的基础上,我们将首先使用剪接大规模并行报告器来量化细胞类型特异性 AS
分析(MPRA)。我们将重点关注外显子跳跃和内含子保留,因为它们是最重要的
AS 的常见形式,并且具有高度的细胞类型特异性。对于每种类型的 AS,我们将创建库
数十万甚至数百万记者针对感兴趣的地区进行不同的报道。我们随后将
在一组细胞系和培养的原代细胞中测量这些文库的 AS(具体目标 1)。接下来,我们将
使用这些数据来训练机器学习模型,该模型可以准确预测 AS 同工型丰度
报告基因序列。我们将系统地比较不同的网络架构和方法
包括卷积神经网络和循环神经网络。然后我们将模型与序列设计结合起来
先前在实验室开发的方法,用于生成具有增强靶细胞的合成序列
特异性。我们的目标是证明我们可以生成针对我们的任何细胞类型的报告构建体
控制板。我们将通过实验验证预测并使用结果数据迭代改进模型
预测(具体目标 2)。最后,我们将把我们的方法推广到实验环境中
准确地反映了多细胞生物系统中细胞类型的多样性和复杂性。
具体来说,我们将在器官型发育的大鼠脑切片培养物中进行 MPRA 剪接。我们会优化
文库传递到切片培养物的条件,我们将类似地优化读出剪接的方法
单细胞水平的 MPRA。我们将把结果数据与特定目标的生成模型结合起来
1 设计报告基因构建体,将蛋白质表达精确靶向感兴趣的细胞类型(具体目标
3)。我们相信这项工作将为生物学研究带来新的遗传工具,并提供一条途径
基因疗法具有更高的特异性和更少的副作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georg Seelig其他文献
Georg Seelig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georg Seelig', 18)}}的其他基金
Joint receptor and protein expression immunophenotyping through split-pool barcoding
通过分池条形码进行联合受体和蛋白质表达免疫表型
- 批准号:
10625987 - 财政年份:2021
- 资助金额:
$ 39.57万 - 项目类别:
Joint receptor and protein expression immunophenotyping through split-pool barcoding
通过分池条形码进行联合受体和蛋白质表达免疫表型
- 批准号:
10375354 - 财政年份:2021
- 资助金额:
$ 39.57万 - 项目类别:
High-resolution spatial transcriptomics through light patterning
通过光图案化的高分辨率空间转录组学
- 批准号:
9886581 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
High-resolution spatial transcriptomics through light patterning
通过光图案化的高分辨率空间转录组学
- 批准号:
10341212 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
A massively parallel reporter assay for measuring chromatin effects on alternative splicing
用于测量染色质对选择性剪接的影响的大规模并行报告分析
- 批准号:
10161803 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
A massively parallel reporter assay for measuring chromatin effects on alternative splicing
用于测量染色质对选择性剪接的影响的大规模并行报告分析
- 批准号:
9977420 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
High-resolution spatial transcriptomics through light patterning
通过光图案化进行高分辨率空间转录组学
- 批准号:
10112854 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
A predictive model of mRNA stability and translation for variant interpretation and mRNA therapeutics
用于变异解释和 mRNA 治疗的 mRNA 稳定性和翻译的预测模型
- 批准号:
9894822 - 财政年份:2018
- 资助金额:
$ 39.57万 - 项目类别:
Predictive Modeling of Alternative Splicing and Polyadenylation from Millions of Random Sequences
数百万随机序列的选择性剪接和聚腺苷酸化的预测模型
- 批准号:
9306648 - 财政年份:2017
- 资助金额:
$ 39.57万 - 项目类别:
相似国自然基金
TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
- 批准号:82370111
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
- 批准号:82304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
- 批准号:82303784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
- 批准号:82373527
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
拟南芥剪接因子SR蛋白通过选择性剪接调控获得性耐热的机理研究
- 批准号:32300247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Antisense Oligonucleotides to Regulate Gamma' Fibrinogen Levels
开发反义寡核苷酸来调节γ纤维蛋白原水平
- 批准号:
10759950 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
The role of long noncoding RNA CRNDE in normal physiology and cancer
长链非编码RNA CRNDE在正常生理和癌症中的作用
- 批准号:
10715065 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Foxp3 isoforms and IgE-mediated UVB-induced skin inflammation expression
Foxp3亚型和IgE介导的UVB诱导的皮肤炎症表达
- 批准号:
10728256 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Biogenesis of mRNA-derived telomerase long noncoding RNA
mRNA 衍生端粒酶长非编码 RNA 的生物发生
- 批准号:
10638429 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Regulation of Flt 1 Splicing by Fibronectin and Integrin Signaling During Aging
衰老过程中纤连蛋白和整合素信号传导对 Flt 1 剪接的调节
- 批准号:
10777172 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别: