A synthetic signaling pathway engineering platform for creating precision cell-based sense-and-response devices
用于创建基于细胞的精密传感和响应设备的合成信号通路工程平台
基本信息
- 批准号:10630917
- 负责人:
- 金额:$ 34.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acute Graft Versus Host DiseaseAddressAnti-Inflammatory AgentsAutoimmune DiseasesBehaviorBehavioralCell ShapeCell TherapyCell physiologyCellsClassificationCouplingCuesCustomDataDetectionDevelopmentDevicesDiagnosticDimerizationDiscriminationDiseaseEngineeringEnvironmentEventExcisionFoundationsG-Protein-Coupled ReceptorsGenetic TranscriptionGoalsGrowth FactorHumanImmuneInfectionInflammationInflammatoryIntelligenceMalignant NeoplasmsMediatingMembraneMesenchymal Stem CellsModelingMolecularMonitorOutputPathway interactionsPatientsPhosphorylationPhosphorylation SiteProcessProteinsProteolysisRegulationResearch PersonnelSafetySchemeSignal PathwaySignal TransductionSignal Transduction PathwaySignaling ProteinSpecificitySurfaceSystemTechnologyTestingTherapeuticTimeTissuesTranslationsWorkcellular engineeringclinically relevantcytokinedesignenvironmental changeestablished cell lineextracellularflexibilityimprovedmesenchymal stromal cellnervous system disordernext generationnon-Nativenovelprogramsrapid detectionreceptorresponsesmall moleculesynthetic biologysynthetic constructtechnology platformtissue traumatooltreatment response
项目摘要
SUMMARY
Protein signaling networks are used by cells to sense, process, and respond to physical and molecular features
in their external environment. Engineering artificial signaling networks that couple membrane receptor-mediated
sensing of disease-associated signals to therapeutic responses could lead to breakthroughs in the development
of dynamic cell-based therapeutic devices capable of autonomously detecting and treating disease. In contrast
to native signaling networks, which rely on phosphorylation to transduce external signals, current approaches
for constructing synthetic signaling networks in humans rely on nonnative regulatory mechanisms and operate
on slow timescales or via single-turnover events. As a consequence, it is challenging to construct sense-and-
respond programs that accurately couple environmental fluctuations to output response, or that can flexibly in-
corporate diverse receptor-mediated inputs. The ability to engineer phosphorylation-based sense-and-response
programs could enable functional behavior resembling native pathways, including rapid detecting and integration
of extracellular signals. By enabling fine-tuned discrimination between different extracellular environments, such
programs could enhance safety and efficacy profiles of cell-based therapies. In this project, we will establish a
generalizable approach for engineering synthetic phosphorylation-based signaling in human cells, laying a foun-
dation for next-generation cell therapy devices capable of sensing molecular cues associated with disease, and
converting them into quantitatively defined therapeutic responses. To accomplish our goals, we will leverage a
synthetic biology platform recently developed by our lab that enables bottom-up construction of synthetic phos-
phorylation circuitry using engineered signaling proteins. As our preliminary work demonstrates, this platform
can be used to create synthetic signaling pathways connecting receptor-mediated detection of extracellular mol-
ecules to activation of downstream cellular processes (e.g., transcription). Here, we will investigate if this platform
can be used to engineer sense-and respond program to treat inflammatory disease. Specifically, we will: 1)
demonstrate the ability of synthetic pathways to be wired to receptors that sense diverse biomolecular cues
associated with inflammation; 2) engineer signaling networks that integrate multiple signals and respond exclu-
sively in the presence of defined combinations of inflammatory cues and; 3) test pathways in mesenchymal
stromal cells (MSCs) to assess translatability of our platform. Our work will illuminate foundational principles for
engineering synthetic signaling circuits and deliver a powerful technology platform for creating customized
sense-and-respond programs that can precisely distinguish between features of healthy and diseased tissue. In
addition to disease monitoring and diagnostic applications, these precision cell-based therapy devices could be
used treat diseases ranging from inflammatory and autoimmune disorders, to tissue trauma and cancer.
概括
细胞使用蛋白质信号网络来感知,处理和响应物理和分子特征
在他们的外部环境中。工程人工信号网络,使膜受体介导
传感与疾病相关的信号对治疗反应可能会导致发展的突破
能够自主检测和治疗疾病的基于动态细胞的治疗装置的。相比之下
到依赖磷酸化来传递外部信号的天然信号网络,当前方法
用于构建人类中的合成信号网络,依靠非本地调节机制并运行
在缓慢的时间尺度上或通过一次性事件。结果,建立感官和 -
响应这些程序,使环境波动能够伴随着输出响应,或者可以灵活地进行响应
公司多样化的受体介导的投入。设计基于磷酸化的感官和响应的能力
程序可以实现类似于本地途径的功能行为,包括快速检测和集成
细胞外信号。通过在不同的细胞外环境之间进行微调的歧视,例如
程序可以增强基于细胞的疗法的安全性和功效概况。在这个项目中,我们将建立一个
在人类细胞中基于工程合成磷酸化的工程合成磷酸化的可概括方法,放置了一个
下一代细胞疗法设备,能够感应与疾病相关的分子提示和
将它们转换为定量定义的治疗反应。为了实现我们的目标,我们将利用
我们的实验室最近开发了合成生物学平台,该平台可以自下而上的合成phos-
使用工程信号蛋白的伪造电路。正如我们的初步工作所表明的那样,这个平台
可用于创建连接受体介导的细胞外分子检测的合成信号通路
向下游细胞过程激活(例如,转录)。在这里,我们将调查这个平台是否
可用于设计和反应计划以治疗炎症性疾病。具体来说,我们将:1)
证明合成途径与受体有多种生物分子提示的受体连接的能力
与炎症有关; 2)工程师信号网络,这些信号网络集成多个信号并响应不可
在存在炎症提示的定义组合的情况下; 3)间充质的测试途径
基质细胞(MSC)评估我们平台的可翻译性。我们的工作将阐明
工程合成信号电路,并提供一个强大的技术平台,用于创建定制的
可以准确区分健康组织和患病组织特征的感官和响应程序。在
除了疾病监测和诊断应用外,这些基于细胞的基于细胞的治疗设备可能是
使用的疾病从炎症和自身免疫性疾病到组织创伤和癌症等疾病。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering the next generation of cell-based therapeutics.
- DOI:10.1038/s41573-022-00476-6
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Engineering synthetic phosphorylation signaling networks in human cells.
在人体细胞中工程合成磷酸化信号网络。
- DOI:10.1101/2023.09.11.557100
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yang,Xiaoyu;Rocks,JasonW;Jiang,Kaiyi;Walters,AndrewJ;Rai,Kshitij;Liu,Jing;Nguyen,Jason;Olson,ScottD;Mehta,Pankaj;Collins,JamesJ;Daringer,NicholeM;Bashor,CalebJ
- 通讯作者:Bashor,CalebJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caleb Bashor其他文献
Caleb Bashor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caleb Bashor', 18)}}的其他基金
A synthetic signaling pathway engineering platform for creating precision cell-based sense-and-response devices
用于创建基于细胞的精密传感和响应设备的合成信号通路工程平台
- 批准号:
10280787 - 财政年份:2021
- 资助金额:
$ 34.1万 - 项目类别:
A synthetic signaling pathway engineering platform for creating precision cell-based sense-and-response devices
用于创建基于细胞的精密传感和响应设备的合成信号通路工程平台
- 批准号:
10459525 - 财政年份:2021
- 资助金额:
$ 34.1万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A synthetic signaling pathway engineering platform for creating precision cell-based sense-and-response devices
用于创建基于细胞的精密传感和响应设备的合成信号通路工程平台
- 批准号:
10280787 - 财政年份:2021
- 资助金额:
$ 34.1万 - 项目类别:
A synthetic signaling pathway engineering platform for creating precision cell-based sense-and-response devices
用于创建基于细胞的精密传感和响应设备的合成信号通路工程平台
- 批准号:
10459525 - 财政年份:2021
- 资助金额:
$ 34.1万 - 项目类别:
Targeting novel DAMP mediated signaling pathways to mitigate GVHD
靶向新型 DAMP 介导的信号通路以减轻 GVHD
- 批准号:
9982255 - 财政年份:2017
- 资助金额:
$ 34.1万 - 项目类别:
Cannabinoid-mediated mitigation of graft versus host disease: Roles of CB2 receptors and adenosine signaling
大麻素介导的移植物抗宿主病缓解:CB2 受体和腺苷信号传导的作用
- 批准号:
9402352 - 财政年份:2017
- 资助金额:
$ 34.1万 - 项目类别:
A Phase I/II Clinical Trial to Investigate Fucosylated Tregs in Prevention of GVHD
研究岩藻糖基化 Tregs 预防 GVHD 的 I/II 期临床试验
- 批准号:
8921033 - 财政年份:2015
- 资助金额:
$ 34.1万 - 项目类别: