A redox-sensitive switch in the macrophage nucleus regulates acute phase inflammatory injury
巨噬细胞核中的氧化还原敏感开关调节急性期炎症损伤
基本信息
- 批准号:10631088
- 负责人:
- 金额:$ 55.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute Respiratory Distress SyndromeAffectAlveolarAnti-Inflammatory AgentsAntioxidantsAutoimmunityBacteriaBacterial PneumoniaBinding ProteinsCISH geneCell NucleusCellsChIP-seqClinicalConfocal MicroscopyCritical IllnessCysteineDataDepositionDevelopmentDiffuseElderlyEnvironmentEpigenetic ProcessEquilibriumGene TargetingGenesGenetic EngineeringGenetic TranscriptionGoalsHomeostasisHydrogen PeroxideImmuneImmune responseImmunosuppressive AgentsInfectionInfectious AgentInflammationInflammatoryInjuryKlebsiella pneumoniaeKnock-in MouseLicensingLungLung infectionsMacrophageMediatingMetabolicMetabolic syndromeModelingModificationMolecularMusNeutrophil ActivationNitric OxideNitric Oxide Synthase Type INitrogenNuclearNucleic Acid Regulatory SequencesOutputOverweightOxidantsOxidation-ReductionOxidative StressOxygenPathway interactionsPatientsPhasePhenotypePneumoniaPopulationPredispositionPrevalencePreventionProductionPromoter RegionsPublishingPulmonary InflammationPulmonologyReactive Oxygen SpeciesRegulatory ElementResearchResolutionRiskRoleSWI1Signal TransductionSmokerSmokingSpecific qualifier valueSpeedSterilityStructure of parenchyma of lungTNFRSF5 geneTestingTherapeuticTissuesbactericidecatalaseexperiencefightinggene networkgenomic locushealinghuman old age (65+)inhibitorknockout animallung injurymonocytemortalitymouse modelneutrophilnoveloxidationp65pathogenic microbepreservationpreventpromoterrecruitresponsesurfactant productiontissue injurytissue repairtranscription factorubiquitin-protein ligase
项目摘要
SUMMARY
This application is based on the discovery that reactive oxygen and nitrogen species (RONS)
within the nucleus of macrophages are powerful signals regulating the polarization of the early
immune response and, in particular, the activation of the acute phase of inflammation.
Specifically, we found that the promoters of a subset of pro-inflammatory NFκB-target genes,
while remaining constitutively accessible, are muted by association with SOCS1, a redox sensitive
protein that binds and depletes incoming p65 NFκB. This mechanism simultaneously prevents
inflammatory tissue injury during homeostasis as well as provides a rapid and specific pathway
to mobilizing aggressive innate immune cells to hunt and kill highly proliferative pathogenic
microbes. NOS1-derived nitric oxide (NO) displaces SOCS1 by S-nitrosylation licensing the
transcription of acute pro-inflammatory NFκB-target genes. Because H2O2 (ROS) can modify
cysteines similarly to NO, we hypothesize that oxidative stress in the nucleus mimics NO,
displacing SOCS1 from regulatory regions of pro-inflammatory genes as well as preventing its de
novo deposition thereby extending the acute phase of inflammation and preventing the transition
to inflammatory resolution and tissue healing. Clinically, this exacerbates pulmonary tissue injury
and elevates the risk of ARDS in patients with underlying oxidative stress caused by old age,
smoking, autoimmunity, or other conditions. Interestingly, we found that although suppressing
nuclear NO or ROS eliminates much of the inflammatory tissue injury in response to LPS, the
ability of mice to control K. pneumoniae infection remains intact, indicating that targeting nuclear
NO and ROS with existing compounds may be clinically useful to prevent at-risk patients from
evolving to ARDS. Currently, ARDS prevention and management is accomplished by the use of
powerful immunosuppressive drugs that compromise the ability of the patient to fight infection. In
this regard, this proposed project has the potential to advance a long sought goal in the field that
is finding ways to suppress inflammatory tissue injury and ARDS while preserving the ability of
innate immune cells to eliminate infectious agents intact.
概括
该应用基于活性氧和氮物种 (RONS) 的发现
巨噬细胞核内有强大的信号调节早期巨噬细胞的极化
免疫反应,特别是炎症急性期的激活。
具体来说,我们发现促炎 NFκB 靶基因子集的启动子,
虽然保持组成型可及性,但由于与氧化还原敏感的 SOCS1 的关联而被抑制
结合并消耗传入的 p65 NFκB 的蛋白质,此机制可同时防止。
稳态期间的炎症组织损伤,并提供快速且特定的途径
动员侵略性的先天免疫细胞来捕猎和杀死高度增殖的病原体
NOS1 衍生的一氧化氮 (NO) 通过 S-亚硝基化许可取代 SOCS1。
因为 H2O2 (ROS) 可以修饰急性促炎性 NFκB 靶基因的转录。
半胱氨酸与 NO 类似,我们发现细胞核中的氧化应激类似于 NO,
取代 SOCS1 对促炎基因的调节并防止其消失
新沉积从而延长炎症的急性期并阻止转变
临床上,这会加重肺组织损伤。
并增加因老年引起的潜在氧化应激的患者患 ARDS 的风险,
吸烟、自身免疫或其他疾病。
核 NO 或 ROS 消除了 LPS 引起的大部分炎症组织损伤,
小鼠控制肺炎克雷伯菌感染的能力保持完整,表明靶向核
NO 和 ROS 与现有化合物在临床上可能有助于预防高危患者
目前,ARDS 的预防和管理是通过使用
强效免疫抑制药物会损害患者抵抗感染的能力。
在这方面,该拟议项目有可能推动该领域长期追求的目标:
正在寻找抑制炎症组织损伤和 ARDS 的方法,同时保留
先天免疫细胞可以完整地消除感染因子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcelo G Bonini其他文献
Marcelo G Bonini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcelo G Bonini', 18)}}的其他基金
Arsenic suppresses progesterone receptor signaling and promotes tamoxifen resistance and metastasis of ER+ breast cancer
砷抑制孕激素受体信号传导并促进 ER 乳腺癌的他莫昔芬耐药性和转移
- 批准号:
10662054 - 财政年份:2022
- 资助金额:
$ 55.58万 - 项目类别:
A redox-sensitive switch in the macrophage nucleus regulates acute phase inflammatory injury
巨噬细胞核中的氧化还原敏感开关调节急性期炎症损伤
- 批准号:
10451112 - 财政年份:2022
- 资助金额:
$ 55.58万 - 项目类别:
Environmental Arsenic in the Subtype Specification of Breast Cancer
乳腺癌亚型规范中的环境砷
- 批准号:
10252934 - 财政年份:2020
- 资助金额:
$ 55.58万 - 项目类别:
Environmental Arsenic in the Subtype Specification of Breast Cancer
乳腺癌亚型规范中的环境砷
- 批准号:
10488608 - 财政年份:2020
- 资助金额:
$ 55.58万 - 项目类别:
Environmental Arsenic in the Subtype Specification of Breast Cancer
乳腺癌亚型规范中的环境砷
- 批准号:
10204605 - 财政年份:2020
- 资助金额:
$ 55.58万 - 项目类别:
MNSOD ACETYLATION PROMOTES CANCER STEM CELL PHENOTYPES IN BREAST CANCER
MNSOD 乙酰化促进乳腺癌干细胞表型
- 批准号:
10221632 - 财政年份:2018
- 资助金额:
$ 55.58万 - 项目类别:
MNSOD ACETYLATION PROMOTES CANCER STEM CELL PHENOTYPES IN BREAST CANCER
MNSOD 乙酰化促进乳腺癌干细胞表型
- 批准号:
10193167 - 财政年份:2018
- 资助金额:
$ 55.58万 - 项目类别:
MnSOD Acetylation Promotes Cancer Stem Cell Phenotypes in Breast Cancer
MnSOD 乙酰化促进乳腺癌干细胞表型
- 批准号:
9763487 - 财政年份:2018
- 资助金额:
$ 55.58万 - 项目类别:
MNSOD ACETYLATION PROMOTES CANCER STEM CELL PHENOTYPES IN BREAST CANCER
MNSOD 乙酰化促进乳腺癌干细胞表型
- 批准号:
10380372 - 财政年份:2018
- 资助金额:
$ 55.58万 - 项目类别:
MNSOD ACETYLATION PROMOTES CANCER STEM CELL PHENOTYPES IN BREAST CANCER
MNSOD 乙酰化促进乳腺癌干细胞表型
- 批准号:
10453720 - 财政年份:2018
- 资助金额:
$ 55.58万 - 项目类别:
相似国自然基金
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亚低温对急性呼吸窘迫综合征大鼠TLR4/MyD88信号通路的影响
- 批准号:81660313
- 批准年份:2016
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
吸气和呼气肌肉活动对ARDS机械通气影响及其机制的实验研究
- 批准号:81660018
- 批准年份:2016
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
消退素D1对肺泡巨噬细胞表型转化的影响及机制研究
- 批准号:81570076
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
高密度脂蛋白异常修饰在急性呼吸窘迫综合征发病中对血管内皮细胞功能修复影响的分子机制研究
- 批准号:81570070
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Function interactions between mitogen-activated protein kinases (MAPKs) and SARS-CoV-2
丝裂原激活蛋白激酶 (MAPK) 与 SARS-CoV-2 之间的功能相互作用
- 批准号:
10659904 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
- 批准号:
10748433 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
New mechanism-based TREM-1 therapy for acute respiratory distress syndrome
基于新机制的 TREM-1 疗法治疗急性呼吸窘迫综合征
- 批准号:
10678788 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Lung epithelial cell-derived C3 in acute lung injury
肺上皮细胞衍生的 C3 在急性肺损伤中的作用
- 批准号:
10720687 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别: