A Precision Medicine Tool for Optimal Personalized Treatment in Patients with Acute Myeloid Leukemia
用于急性髓系白血病患者最佳个性化治疗的精准医疗工具
基本信息
- 批准号:10547266
- 负责人:
- 金额:$ 39.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcute Myelocytic LeukemiaAddressAdoptionAdultAdult Acute Myeloblastic LeukemiaAlgorithmsBloodBody Surface AreaBody WeightBone MarrowCell CountCell CycleCell Cycle KineticsCellsChemoresistanceClonal EvolutionCodeCombination immunotherapyComputer softwareConfidence IntervalsCoupledDNA analysisDataDecision MakingDevelopmentDiagnosisDiseaseDisease OutcomeDisease ResistanceDisease remissionDoseDrug KineticsFDA approvedFamilyFutureGenomicsGoldHealth Care CostsHealth PersonnelHealth ProfessionalHepaticHeterogeneityHospital CostsImmuno-ChemotherapyIntervention StudiesKidneyKineticsLeukemic CellMalignant Bone NeoplasmMalignant NeoplasmsMeasurableMedical DeviceMissionMutationObservational StudyOncologistOnline SystemsOutcomeOverweightPatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacodynamicsPharmacology StudyPhasePlasmaPrecision therapeuticsProcessPrognosisProtein AnalysisPublishingPythonsQuality of lifeRecoveryRefractory DiseaseRegimenRelapseResidual TumorsResistanceResistance developmentRiskScheduleSecureSelection for TreatmentsServicesStandardizationSurveysTechniquesTherapeuticTimeToxic effectTreatment CostTreatment EfficacyValidationVertebral columnVisualizationacute myeloid leukemia cellbasechemotherapyclinical decision supportdiagnostic valuedosageimprovedimproved outcomeindividual patientleukemiamathematical modelmultiple omicsneutrophilnovelnovel drug classoptimal treatmentspatient orientedperipheral bloodpersonalized medicinepharmacokinetics and pharmacodynamicsprecision medicinepreventprospectiverapid growthrecruitresponsesatisfactionsimulationsmall molecule inhibitorstandard of caresupport toolstargeted agenttherapy outcometooltreatment optimizationtreatment responsetumoruser-friendly
项目摘要
Acute myeloid leukemia (AML) is an aggressive cancer of the bone marrow and peripheral blood with poor
prognosis mostly due to relapse. Despite decades of improvements in chemo-immunotherapy (CIT) and, more
recently, the use of hypomethylating agent (HMAs) and addition of novel small molecule inhibitors (SMIs) to
back-bone chemotherapy, AML treatment selection and dosage remains mostly empiric, with standard first- and
second-line regimens, each with potential toxic consequences; dosing is based on body surface area, renal and
hepatic function and pharmacokinetics/pharmacodynamics (PK/PD), ignoring tumor-specific parameters (tumor
bulk, heterogeneity and cell cycle kinetics). Consequently, up to 60% of patients are under- or over-dosed and
a further 10-40% of patients have primary refractory disease (non-responders) to gold-standard of care first-line
CIT resulting in poor outcomes with high healthcare costs. Advances in genomic techniques are now able to
assess AML clonal dynamics and measurable residual disease in patients throughout therapy with reasonable
turn-around times. This rapid growth in diagnostic capabilities in conjunction with an ever-increasing number of
available FDA-approved targeted treatments for patients with AML, present a constant and ongoing gap between
practice and potential resulting in significant lag-time between use and know-how to improve outcomes. A
framework for personalized treatment selection and optimization is therefore an unmet need in precision therapy
for patients with AML. To address this need, “πCITTM Simulator”, a Clinical Decision Support service, was
developed to assist Oncologists with treatment selection by providing (before treatment begins) simulations of
disease response, progression, AML clonal evolution and normal blood count recovery in patients receiving
therapy with different CIT, SMI and HMA options and combinations. In order to improve on the selected treatment
for best patient outcome and reduced toxicity, “πCITTM Optimizer”, a Software as Medical Device, was developed
to optimize drug, dose and schedule. πCITTM Simulator and Optimizer provide healthcare professionals with
critical data, prior to treatment initiation, to prevent over- or under-dosage and administration of ineffective drugs
for patients with resistant disease, thereby reducing treatment and hospitalization costs. In Phase 1 of this fast-
track application, SANICKA will develop its first minimum viable product by (1) expanding πCITTM to incorporate
novel SMIs/HMAs resulting in the launch to the market of πCITTM Simulator and (2) creating a web-based
Clinician Portal for Oncologists to upload patient and tumor data, and visualize results. During Phase 2,
SANICKA will (1) expand πCITTM Optimizer to capture AML sub-clonal kinetics and sensitivity to CIT/SMIs/HMAs
using retrospectively-collected multi-center patient data for validation and (2) prospectively validate πCITTM
Optimizer with an observational study in patients with AML as they undergo treatment. The use of πCITTM will
improve patient outcomes and quality of life and reduce healthcare costs by introducing a step-change in the
approach to AML therapy: 1) personalization, 2) precision simulation and, 3) dynamic optimization of treatment.
急性髓样白血病(AML)是骨髓和外周血的侵袭性癌症
预后主要是由于继电器。尽管化学免疫疗法(CIT)有数十年的改善,并且更多
最近,使用甲基化剂(HMA)和新型小分子抑制剂(SMI)的使用
背骨化学疗法,AML治疗选择和剂量仍然是经验性的,具有标准的第一和标准
二线方案,每种方案都有潜在的有毒后果;剂量基于身体表面积,肾脏和
肝功能和药代动力学/药效学(PK/PD),忽略肿瘤特异性参数(肿瘤
散装,异质性和细胞周期动力学)。因此,多达60%的患者剂量不足或过度剂量,并且
另外10-40%的患者患有原发性难治性疾病(无反应者)至一线护理标准
CIT导致较差的医疗保健成本结果不佳。基因组技术的进步现在能够
在整个治疗过程中评估患者的AML克隆动力学和可测量的残留疾病
周转时间。诊断能力的快速增长与数量不断增加
可用的FDA批准的针对AML患者的靶向治疗方法,呈现出恒定且持续的差距
练习和潜在的使用,导致使用和专业知识之间的滞后时间大大改善结果。一个
因此,用于个性化治疗选择和优化的框架是精确治疗的未满足需求
适用于AML的患者。为了满足这种需求,临床决策支持服务“πcittm模拟器”是
通过提供(在开始开始之前)模拟肿瘤学家来协助肿瘤学家进行治疗的选择
接受的患者的疾病反应,进展,AML克隆进化和正常血数恢复
具有不同的CIT,SMI和HMA选项和组合的治疗。为了改善所选治疗
为了最好的患者结局和降低毒性,开发了一种医疗设备的软件“πcittm优化器”
优化药物,剂量和时间表。 πCITTM模拟器和优化器为医疗保健专业人员提供
在治疗计划之前,关键数据可以防止过度或剂量不足和无效药物给药
对于耐药性疾病的患者,从而降低了治疗和住院费用。在这个快速的第1阶段
轨道应用,Sanicka将通过(1)扩展πCittm开发其第一个最低可行产品
新颖的SMI/HMA导致推出πCittm模拟器市场,(2)创建基于Web的市场
肿瘤学家上载患者和肿瘤数据的临床医生门户,并可视化结果。在第2阶段,
Sanicka将(1)扩展πCittm优化器,以捕获AML亚连锁动力学和对CIT/SMIS/HMAS的敏感性
使用回顾性收集的多中心患者数据进行验证和(2)前瞻性验证πCITTM
在接受治疗时,对AML患者进行观察性研究的优化器。 πCittm的使用将
通过引入逐步改变
AML治疗方法:1)个性化,2)精确模拟和3)治疗的动态优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Athanasios Mantalaris其他文献
Athanasios Mantalaris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Athanasios Mantalaris', 18)}}的其他基金
Biomaterials to enhance the efficacy of MSCs for rotator cuff repair
生物材料可增强 MSC 修复肩袖的功效
- 批准号:
10295835 - 财政年份:2021
- 资助金额:
$ 39.69万 - 项目类别:
相似海外基金
SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
- 批准号:
10911713 - 财政年份:2023
- 资助金额:
$ 39.69万 - 项目类别:
Hyperpolarized Micro-NMR for Quantitative Analysis of Metabolism in Leukemia Stem Cells
用于白血病干细胞代谢定量分析的超极化微核磁共振
- 批准号:
10359185 - 财政年份:2018
- 资助金额:
$ 39.69万 - 项目类别:
Hyperpolarized Micro-NMR for Quantitative Analysis of Metabolism in Leukemia Stem Cells
用于白血病干细胞代谢定量分析的超极化微核磁共振
- 批准号:
10544545 - 财政年份:2018
- 资助金额:
$ 39.69万 - 项目类别:
Hyperpolarized Micro-NMR for Quantitative Analysis of Metabolism in Leukemia Stem Cells
用于白血病干细胞代谢定量分析的超极化微核磁共振
- 批准号:
10305913 - 财政年份:2018
- 资助金额:
$ 39.69万 - 项目类别:
Dissecting Single-cell Response or resistance to novel combination therapy in AML using mass cytometry
使用质谱流式细胞仪剖析单细胞对 AML 新型联合疗法的反应或耐药
- 批准号:
10411840 - 财政年份:2017
- 资助金额:
$ 39.69万 - 项目类别: