De Novo Assembly Tools: Research with Unbiased Engines (DNA-TRUE)
从头组装工具:使用无偏差引擎进行研究 (DNA-TRUE)
基本信息
- 批准号:8816112
- 负责人:
- 金额:$ 24.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-04 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAlgorithmsArchitectureAreaBioinformaticsBiologicalBiologyCerealsCollaborationsCommunitiesComputer SystemsComputer softwareDNA ResequencingDNA SequenceDataDetectionDevelopmentDevicesDropsEquilibriumEventGene Expression ProfileGenerationsGenomeGenomicsGoalsGraphHealthHigh Performance ComputingHigh-Throughput Nucleotide SequencingHybridsIndividualInfectious AgentInstructionInternationalJointsLengthLifeMalignant NeoplasmsMedicineMemoryPerformancePhylogenyPolyadenylationPopulation StudyProceduresProcessProtein IsoformsRNA SequencesRNA SplicingReadingResearchResearch PersonnelSamplingSeedsSiteSliceSourceStagingTechnologyTestingThe Cancer Genome AtlasTimeTranscriptTreesVariantanticancer researchbasecancer genomecohortcostcost effectivedata structuredesignfallsgenome-widehuman reference genomeimprovedindexinginsightinterestmetagenomemicrobiomenew technologynext generationoperationresearch studyscaffoldshared memorysuccesstargeted sequencingtooltranscriptome sequencing
项目摘要
In a resequencing experiment, assembling reads into a coherent picture enables joint analysis of
raw reads, offering an unbiased approach to detect genomic differences between individuals in
population studies or to identify somatic changes in cancer research. This approach is gaining
interest as large scale studies, such as The Cancer Genome Atlas (TCGA) and the International
Cancer Genome Consortium (ICGC) projects, compile their preliminary findings.
Our implementation of a de novo assembly algorithm and its downstream analysis pipelines are
popular tools in the field for interrogating genomes (ABySS) and transcriptomes (Trans-ABySS).
Using these tools, our team has been contributing analysis results to a number of cancer studies,
including several TCGA and ICGC projects. We also make these software available for the
community; as of January 2014, ABySS and Trans-ABySS have collectively received over 700
citations (source: Thomson-Reuters) while enjoying vibrant user discussion venues at Google
Groups. Building on the success of our analysis platforms, we will continue developing our
algorithms, and will adapt them to data from the rapidly evolving sequencing technologies.
We propose to improve the performance of ABySS and Trans-ABySS, and continue supporting a
growing user base with better genome, transcriptome, and metagenome assembly and analysis
tools. We will also expand the functionality of our analysis pipelines to integrate orthogonal data
that support detected events; present alternative isoform usage in assembled transcriptomes as
slice graphs; reconstruct 3' untranslated regions; and refine contig to reference alignments and
their interpretation for better structural variation and chimeric transcript detection.
To accomplish these goals, we will focus on (1) algorithmic improvements on the primary
sequence assembly and alignment approaches, (2) high performance computing platforms, and
optimize our analysis approaches on the next generation of central processing unit (CPU)
architectures, and (3) downstream analysis pipelines, building streamlined standard operating
procedures.
With sequencing technologies changing rapidly, and their throughput still increasing
exponentially, there is a need to adapt established bioinformatics tools, such as ABySS and
Trans-ABySS, improve their performance, and make their use accessible to a growing
community. The continued development of our tools will enable translational genomics studies on
the road to precise personal medicine.
在重测序实验中,将读数组装成连贯的图片可以进行联合分析
原始读数,提供了一种公正的方法来检测个体之间的基因组差异
人口研究或识别癌症研究中的体细胞变化。这种方法正在获得
大规模研究的兴趣,例如癌症基因组图谱 (TCGA) 和国际
癌症基因组联盟 (ICGC) 项目汇编了他们的初步研究结果。
我们的从头组装算法及其下游分析流程的实现是
用于询问基因组 (ABySS) 和转录组 (Trans-ABySS) 领域的流行工具。
使用这些工具,我们的团队一直在为许多癌症研究贡献分析结果,
包括多个 TCGA 和 ICGC 项目。我们还为以下用户提供这些软件
社区;截至 2014 年 1 月,ABySS 和 Trans-ABySS 总共收到了 700 多个
引用(来源:汤森路透),同时享受 Google 充满活力的用户讨论场所
团体。基于我们分析平台的成功,我们将继续开发我们的
算法,并将使其适应快速发展的测序技术中的数据。
我们建议提高ABySS和Trans-ABySS的性能,并继续支持
通过更好的基因组、转录组和宏基因组组装和分析来扩大用户群
工具。我们还将扩展分析管道的功能以集成正交数据
支持检测到的事件;目前在组装的转录组中使用替代异构体作为
切片图;重建3'非翻译区域;并将重叠群细化为参考比对和
他们的解释是为了更好的结构变异和嵌合转录本检测。
为了实现这些目标,我们将重点关注(1)主要算法的改进
序列组装和比对方法,(2)高性能计算平台,以及
优化下一代中央处理器 (CPU) 的分析方法
架构,以及(3)下游分析管道,构建简化的标准操作
程序。
随着测序技术日新月异,其通量仍在不断增加
需要以指数方式适应现有的生物信息学工具,例如 ABySS 和
Trans-ABySS,提高其性能,并使不断增长的用户能够使用它们
社区。我们工具的持续开发将使转化基因组学研究成为可能
精准个人医疗之路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inanc Birol其他文献
Inanc Birol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inanc Birol', 18)}}的其他基金
De Novo Assembly Tools: Research with Unbiased Engines - Renewal (DNA-TRUER)
从头组装工具:使用无偏差引擎进行研究 - 更新 (DNA-TRUER)
- 批准号:
10589632 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
De Novo Assembly Tools: Research with Unbiased Engines (DNA-TRUE)
从头组装工具:使用无偏差引擎进行研究 (DNA-TRUE)
- 批准号:
8631896 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
De Novo Assembly Tools: Research with Unbiased Engines - Renewal (DNA-TRUER)
从头组装工具:使用无偏差引擎进行研究 - 更新 (DNA-TRUER)
- 批准号:
9382151 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
De Novo Assembly Tools: Research with Unbiased Engines - Renewal (DNA-TRUER)
从头组装工具:使用无偏差引擎进行研究 - 更新 (DNA-TRUER)
- 批准号:
9791194 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
De Novo Assembly Tools: Research with Unbiased Engines (DNA-TRUE)
从头组装工具:使用无偏差引擎进行研究 (DNA-TRUE)
- 批准号:
9002847 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
De Novo Assembly Tools: Research with Unbiased Engines - Renewal (DNA-TRUER)
从头组装工具:使用无偏差引擎进行研究 - 更新 (DNA-TRUER)
- 批准号:
9976547 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
Pan-cancer survey of candidate non-coding RNA transcripts on the cloud using a targeted de novo assembly approach
使用靶向从头组装方法在云上对候选非编码 RNA 转录本进行泛癌调查
- 批准号:
9167382 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
Identification and annotation of 3' UTR ends using RNA-seq data
使用 RNA-seq 数据识别和注释 3 UTR 末端
- 批准号:
8751765 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
De Novo Assembly Tools: Research with Unbiased Engines - Renewal (DNA-TRUER)
从头组装工具:使用无偏差引擎进行研究 - 更新 (DNA-TRUER)
- 批准号:
9552251 - 财政年份:2014
- 资助金额:
$ 24.97万 - 项目类别:
Neuroinformatics for gene expression: networks, function and meta-analysis
基因表达的神经信息学:网络、功能和荟萃分析
- 批准号:
8502624 - 财政年份:2005
- 资助金额:
$ 24.97万 - 项目类别:
相似海外基金
miR-137 Regulation of Intrinsic Excitability
miR-137 内在兴奋性的调节
- 批准号:
10719579 - 财政年份:2023
- 资助金额:
$ 24.97万 - 项目类别:
Mapping the regulatory landscape of RNA binding proteins and their causal roles in tumorigenesis and patient survival
绘制 RNA 结合蛋白的调控格局及其在肿瘤发生和患者生存中的因果作用
- 批准号:
10350659 - 财政年份:2021
- 资助金额:
$ 24.97万 - 项目类别:
Mapping the regulatory landscape of RNA binding proteins and their causal roles in tumorigenesis and patient survival
绘制 RNA 结合蛋白的调控格局及其在肿瘤发生和患者生存中的因果作用
- 批准号:
10549731 - 财政年份:2021
- 资助金额:
$ 24.97万 - 项目类别:
Analysis of germ granule mRNA composition and its impact on reproductive health
生殖颗粒mRNA组成分析及其对生殖健康的影响
- 批准号:
10200263 - 财政年份:2021
- 资助金额:
$ 24.97万 - 项目类别:
Uncovering the epitranscriptome regulatory codes using machine learning
使用机器学习揭示表观转录组调控代码
- 批准号:
10470221 - 财政年份:2020
- 资助金额:
$ 24.97万 - 项目类别: