Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
基本信息
- 批准号:10563111
- 负责人:
- 金额:$ 3.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAcute myocardial infarctionAddressAlgorithmsAppearanceAreaAssessment toolAttentionCardiacCause of DeathClinicalCommunitiesCongestive Heart FailureCoronary ArteriosclerosisCrystallizationDataData SetDetectionDiagnosisDisadvantagedEchocardiographyEffectivenessEventExerciseFellowshipFunctional disorderGoalsGoldHeartHigh Resolution Computed TomographyImageImage AnalysisImaging TechniquesImplantInfarctionInjuryInterobserver VariabilityIschemiaLabelLeadLearningLeft Ventricular RemodelingLeft ventricular structureManualsMapsMeasurementMechanicsMedical ImagingMethodsModelingMorbidity - disease rateMotionMyocardialMyocardial InfarctionMyocardiumNatureNeural Network SimulationNoiseOrganPatientsPatternPerformancePharmacologyProcessPublic HealthRadialResearchRestShapesSignal TransductionStressStress EchocardiographySurfaceTherapeuticThree-Dimensional EchocardiographyTimeTrainingTwo-Dimensional EchocardiographyUnited StatesVisualWorkX-Ray Computed Tomographybasecanine modelclinical practiceconvolutional neural networkcost effectivedeep learningdeep learning algorithmfeature extractionheart functionheart imagingimaging modalityimprovedmortalitymyocardial injuryneural networkneural network architecturenoveloutcome predictionradio frequencyscreeningsegmentation algorithmspatiotemporaltooltwo-dimensionalvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Coronary artery disease remains the leading cause of death around the world. Acute myocardial infarction (MI)
causes regional dysfunction which places remote areas of the heart at a mechanical disadvantage resulting in
long term adverse left ventricular (LV) remodeling and complicated congestive heart failure (CHF). Stress
echocardiography is currently the clinically established, cost-effective 2D imaging technique for detecting and
characterizing myocardial injury by imaging the left ventricle at rest and after either exercise or
pharmacologically-induced stress to reveal ischemia and/or infarct. However, the inherent limitations of a 2D
echocardiography make it difficult to characterize the whole 3D volume of ischemic/infarct zone, and the
qualitative assessment of wall-motion abnormality to characterize myocardial deformation leads to variability
among experts. Although 3D echocardiography has potential to address the limitations of 2D imaging, it is not
widely accepted in standard clinical use due to the low signal-to-noise ratio (SNR). With the recent advancements
in deep learning algorithms, many segmentation and registration tasks have achieved near expert level accuracy.
Also, previous works have shown the utility of strain analysis as a way to quantify the degree of wall-motion
abnormality in cardiac imaging modalities. Still, many of the current deep learning frameworks focus largely on
intensity-based features which are still difficult to train on 3D echocardiography datasets, which in turn leads to
poor strain analysis. Thus, in this fellowship, I propose to develop novel data-driven neural network models
specifically tailored to 3D echocardiography to improve segmentation and motion tracking of left ventricle in order
to achieve full 3D cardiac strain analysis. My first aim is to develop a multi-frame attention-based neural
network to exploit the spatiotemporal features of the echocardiography dataset to improve 3D
segmentation of left ventricle. This method will take advantage of the inter-frame spatiotemporal features to
augment the relevant feature extractions for segmentation. My second aim is to develop a registration neural
network in 3D echocardiography by combining intensity-based features and surface-curvature bending
energy to improve the motion tracking of left ventricle. This neural network will build upon the accurate
segmentations from the first aim to include unique curvature energy features at the boundaries to enhance
tracking accuracy at all areas of the myocardium. The improved motion tracking will be used to calculate strain
for detection of full 3D ischemic/infarct zones. In summary, this research will provide an objective, quantitative
tools for characterizing wall-motion abnormality with strain analysis in 3D echocardiography.
项目摘要/摘要
冠状动脉疾病仍然是世界各地死亡的主要原因。急性心肌梗塞(MI)
导致区域功能障碍,使心脏的偏远区域处于机械劣势,导致
长期不良左心室(LV)重塑和复杂的充血性心力衰竭(CHF)。压力
超声心动图目前是用于检测和的临床成本有效的2D成像技术
通过在休息和锻炼或
药理学引起的应力显示缺血和/或梗死。但是,2D的固有局限性
超声心动图使很难表征整个3D缺血/梗塞区的3D体积,并且
壁性异常的定性评估以表征心肌变形导致可变性
在专家中。尽管3D超声心动图具有解决2D成像的局限性的潜力,但不是
由于低信噪比(SNR),在标准临床使用中广泛接受。随着最近的进步
在深度学习算法中,许多细分和注册任务已接近专家级别的准确性。
此外,以前的工作已经显示了应变分析的效用,以量化壁感觉的程度
心脏成像方式异常。尽管如此,许多当前的深度学习框架主要集中在
基于强度的功能仍然很难在3D超声心动图数据集上进行训练,这又导致
劳力分析差。因此,在这个奖学金中,我建议开发新型数据驱动的神经网络模型
专门针对3D超声心动图定制,以改善左心室的分割和运动跟踪
实现完整的3D心脏应变分析。我的第一个目的是开发基于注意力的神经
用于利用超声心动图数据集的时空特征以改进3D
左心室的细分。此方法将利用框架间时空特征
增加相关特征提取以进行分割。我的第二个目的是开发注册神经
通过结合基于强度的特征和表面曲线弯曲的3D超声心动图中的网络
能够改善左心室运动跟踪的能量。这个神经网络将基于准确的
从第一个目的的分割,以在边界上包含独特的曲率能量特征以增强
跟踪心肌的所有区域的准确性。改进的运动跟踪将用于计算应变
用于检测完整的3D缺血/梗塞区。总而言之,这项研究将提供一个客观的定量
通过3D超声心动图中的应变分析来表征壁感觉异常的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shawn Ahn其他文献
Shawn Ahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shawn Ahn', 18)}}的其他基金
Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
- 批准号:
10231860 - 财政年份:2021
- 资助金额:
$ 3.16万 - 项目类别:
Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
- 批准号:
10666687 - 财政年份:2021
- 资助金额:
$ 3.16万 - 项目类别:
相似国自然基金
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长链非编码RNA MIPRL在急性心肌梗塞中的作用及分子机制
- 批准号:81870275
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Cdx2+胎盘干细胞移植治疗急性心肌梗塞的实验研究
- 批准号:81270281
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
LPA在急性心梗诱发心律失常中的作用及其电生理机制
- 批准号:81170163
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
心肌缺氧/再灌注与细胞移植多功能集成微流控芯片模型构建及应用
- 批准号:21175107
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Nanowired humam cardiac organoid derived exosomes for heart repair
纳米线人类心脏类器官衍生的外泌体用于心脏修复
- 批准号:
10639040 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Strategies to Enhance Engineered Heart Tissue Based Myocardial Repair
增强基于工程心脏组织的心肌修复的策略
- 批准号:
10581419 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Endothelial Cell Respiration in Atherosclerotic Plaque Erosion
动脉粥样硬化斑块糜烂中的内皮细胞呼吸
- 批准号:
10586227 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别: