Targeting lipopolysaccharide transport machinery in Pseudomonas aeruginosa
铜绿假单胞菌中的靶向脂多糖转运机制
基本信息
- 批准号:10544539
- 负责人:
- 金额:$ 19.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-03 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAffectAntibiotic ResistanceAntibiotic susceptibilityAntibioticsArabinoseAreaAwardBacterial Antibiotic ResistanceBindingBiochemicalBiochemistryBioinformaticsBiologicalBiologyBiosynthetic ProteinsCarbapenemsCarrier ProteinsCell Membrane PermeabilityCell WallCellsChemical StructureChemicalsChronic lung diseaseCollaborationsComplementCryoelectron MicroscopyCytoplasmDataData SetElectrostaticsEngineeringEnvironmentEnzymesExclusionFoundationsFundingFutureGene Expression ProfilingGenesGeneticGenetic ScreeningGenetic TranscriptionGenomicsGoalsGram-Negative BacteriaHandHealthHumanImmune systemK-Series Research Career ProgramsLeadLipopolysaccharide Biosynthesis PathwayLipopolysaccharidesMedicineMembraneMentorsMentorshipMetabolic PathwayMethodsMolecular ProbesMutagensNosocomial InfectionsPathway interactionsPatientsPharmaceutical PreparationsPhenotypePhysiciansProteinsPseudomonas aeruginosaPulmonologyRegulator GenesRegulatory PathwayReporterResearch PersonnelResearch ProposalsResistanceScienceScientistStructureStructure-Activity RelationshipTechniquesTestingTherapeutic AgentsTrainingTraining ProgramsTraining SupportTranslatingWorkbacterial geneticscareercell growthcellular targetingdrug candidatedrug developmentdrug discoveryefflux pumpgenome-widehuman pathogenimprovedinhibitorinsightknowledge baselead candidatelead optimizationmutantnew therapeutic targetnovelnovel strategiesnovel therapeuticspathogenic bacteriapromoterprotein expressionresponsescreeningsmall moleculestatisticsstructural biologytranscriptomicstransport inhibitor
项目摘要
PROJECT SUMMARY
Pseudomonas aeruginosa poses a major threat to human health due to limited treatment options and its
ability to become resistant to antibiotics. P. aeruginosa and other Gram-negative bacteria are particularly
difficult to treat because their asymmetric outer membranes, comprising an electronegative matrix of
lipopolysaccharide (LPS) in the outer leaflet, form an electrostatic barrier excluding most antibiotics. The
candidate aims apply advanced genomic, genetic and chemical biological strategies to study this important
human pathogen, both to develop novel therapeutic agents and to gain insights into the basic biology of
vulnerable targets. In work in progress, recent target-focused, whole cell screening identified 128 small
molecules hypothesized to kill P. aeruginosa by disrupting LPS transport to the outer membrane. In Aim 1,
with small molecule hits in hand, the candidate proposes to develop these compounds by optimizing their
activities and establishing their mechanisms of action. To this end, the candidate has already developed high-
throughput gene expression profiling methods to identify and prioritize hits that induce transcriptional
responses in LPS transport pathways. Preliminary data revealed one lead candidate, C0918, induced a
transcriptional response remarkably similar to that of a known LPS transport inhibitor, demonstrating that
mechanisms of action can be inferred by gene responses compared to those of known antibiotics. Drawing on
his background in protein science, when putative target proteins emerge, the candidate outlines strategies for
protein expression, purification, direct-binding studies, and structure determination by cryogenic electron
microscopy.
Lead compounds in Aim 1 will also serve as valuable molecular probes to investigate the regulatory pathways
underpinning LPS biosynthesis and transport in Aim 2. The candidate will perform a genetic screen to
discover LPS regulatory genes in P. aeruginosa by mutagenizing an engineered reporter strain, which encodes
fluorescent proteins marking expression levels of key LPS synthesis and transport genes. To complemental
screening efforts, the candidate will also characterize single and double mutants encoding regulated copies of
these key genes in LPS biosynthesis and transport, aimed at determining phenotypic consequences when LPS
biosynthetic intermediates buildup under conditions of high LPS synthesis but low transport.
With the guidance of his mentor, Dr. Deb Hung, the candidate has developed a five-year training program to
provide both the technical and didactic training necessary to become an independent physician-scientist
focused on using small molecules to target LPS transport, while also gaining insights into its underlying
regulatory machinery in P. aeruginosa. Importantly, this project will be overseen by a scientific advisory
committee providing expertise in key areas of this proposal, including LPS biology, bacterial genetics,
genomics, and chemical biology. Throughout the career development award period, the candidate will expand
his knowledge base with complete didactic and hands-on training. The candidate will complete coursework in
bioinformatics and statistics to help with analyzing genomic-wide datasets. This proposal therefore
provides the necessary training and scientific foundation to achieve Dr. Romano's ultimate goal
of becoming a RO1-funded physician-scientist who applies advanced genomic and chemical
biological techniques to study and treat bacterial pathogens.
项目摘要
铜绿假单胞菌由于治疗选择有限及其
能够抗抗生素的能力。铜绿假单胞菌和其他革兰氏阴性细菌尤其是
由于其不对称的外膜,很难治疗,包括
外部小叶中的脂多糖(LPS),形成不包括大多数抗生素的静电屏障。这
候选人的目的应用高级基因组,遗传和化学生物学策略来研究这一重要
人类病原体,既可以发展新型的治疗剂,又有见解
脆弱的目标。在进行的工作中,最近以目标为中心的全细胞筛选确定了128个小
通过破坏LPS转运到外膜的运输,假设可以杀死铜绿假单胞菌的分子。在AIM 1中,
候选人手里拿着小分子的命中,提议通过优化它们来开发这些化合物
活动并建立他们的行动机制。为此,候选人已经发展了很高的
吞吐基因表达分析方法,以识别和优先级诱导转录的命中
LPS运输途径的响应。初步数据显示,一名主要候选人C0918诱导了A
转录响应与已知的LPS运输抑制剂非常相似,表明
与已知抗生素相比,基因反应可以推断作用机理。吸引
他在蛋白质科学方面的背景,当假定的靶蛋白出现时,候选人概述了策略
蛋白质表达,纯化,直接结合研究和低温电子的结构测定
显微镜。
AIM 1中的铅化合物还将作为研究调节途径的有价值的分子探针
AIM 2中的LPS生物合成和运输的基础。候选人将执行遗传筛查
通过对铜绿假单胞菌中的LPS调节基因进行诱变,以编码工程的报告菌株
荧光蛋白标记关键LPS合成和转运基因的表达水平。互补
筛选工作,候选人还将表征编码调节副本的单个和双重突变体
LPS生物合成和转运中的这些关键基因,旨在确定LPS时表型后果
生物合成中间体在高LPS合成但运输较低的条件下堆积。
Deb Hung博士在导师的指导下,候选人制定了一项为期五年的培训计划
提供成为独立医师科学家所需的技术和教学培训
专注于使用小分子以靶向LP的传输,同时也可以洞悉其基础
铜绿假单胞菌的监管机械。重要的是,该项目将受到科学咨询的监督
委员会在该提案的关键领域提供专业知识,包括LPS生物学,细菌遗传学,
基因组学和化学生物学。在整个职业发展奖中,候选人将扩大
他的知识基础通过完整的教学和动手培训。候选人将完成课程
生物信息学和统计数据,以帮助分析全基因组范围的数据集。因此,该建议
提供必要的培训和科学基础,以实现罗曼诺博士的最终目标
成为RO1资助的医师科学家,他应用高级基因组和化学
研究和治疗细菌病原体的生物学技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Patrick Romano其他文献
Keith Patrick Romano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Patrick Romano', 18)}}的其他基金
Targeting lipopolysaccharide transport machinery in Pseudomonas aeruginosa
铜绿假单胞菌中的靶向脂多糖转运机制
- 批准号:
10328545 - 财政年份:2020
- 资助金额:
$ 19.98万 - 项目类别:
Targeting lipopolysaccharide transport machinery in Pseudomonas aeruginosa
铜绿假单胞菌中的靶向脂多糖转运机制
- 批准号:
10092101 - 财政年份:2020
- 资助金额:
$ 19.98万 - 项目类别:
相似国自然基金
基于真菌的跨界群体感应干扰对水环境抗生素抗性基因传播的影响及调控研究
- 批准号:42307159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可溶态生物炭对抗生素抗性基因在水土环境中迁移与水平转移的影响及机制
- 批准号:42307468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
熏蒸结合动物堆肥对土壤-蔬菜系统抗生素抗性基因的影响机制
- 批准号:42307033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工补给对地下水抗生素抗性组与病原菌的影响及调控机制
- 批准号:42377392
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型非抗生素类药物对活性污泥多质粒介导下抗生素抗性基因水平转移的影响机制研究
- 批准号:42307529
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dissemination and Implementation of a Videoconference Antimicrobial Stewardship Team (VAST)
视频会议抗菌管理团队 (VAST) 的传播和实施
- 批准号:
10620614 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Center for Applied Immunology and Pathological Processes
应用免疫学和病理过程中心
- 批准号:
10090768 - 财政年份:2021
- 资助金额:
$ 19.98万 - 项目类别:
Center for Applied Immunology and Pathological Processes
应用免疫学和病理过程中心
- 批准号:
10360457 - 财政年份:2021
- 资助金额:
$ 19.98万 - 项目类别:
High-throughput disulfide and FRET scanning to reveal protein conformational ensembles in vitro and in vivo.
高通量二硫键和 FRET 扫描可揭示体外和体内蛋白质构象整体。
- 批准号:
10191303 - 财政年份:2021
- 资助金额:
$ 19.98万 - 项目类别:
Targeting lipopolysaccharide transport machinery in Pseudomonas aeruginosa
铜绿假单胞菌中的靶向脂多糖转运机制
- 批准号:
10328545 - 财政年份:2020
- 资助金额:
$ 19.98万 - 项目类别: