Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine

优化通用流感亚单位纳米/微粒疫苗

基本信息

  • 批准号:
    10540741
  • 负责人:
  • 金额:
    $ 56.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT The WHO estimates there are approximately 5 million cases of influenza infections annually, with approximately 500,000 deaths occurring globally. The most cost-effective protection against influenza is vaccination. Unfortunately, due to yearly antigenic shifts and drifts, current seasonal vaccines are ineffective. There is a need for a better flu vaccine. In order to design a better flu vaccine, we plan on optimizing the immune synapse using nano/microparticles (MPs) fabricated from the polymer acetalated dextran (Ac-DEX). Our previous data has shown a dependence of particle degradation and optimal immune response against an influenza antigen. Not only does the release of the antigen effect the immune response, the release of the adjuvant is also important. The optimized degradation of both adjuvant and antigen has a drastic change in survival compared to non- optimized formulations. Our particle system is unique because it relies on the highly tunable polymer Ac-DEX. Ac-DEX is ideal for delivery of agents to phagocytic cells because it is acid-sensitive and has significantly increased degradation in the low acid (~pH 5) of the phagosome. In addition to this it has tunable degradation rates that can range from hours to months, which is a unique range from commonly used polyesters (e.g. poly(lactic-co-glycolic acid) (PLGA)) that have degradation on the order of months. Moreover, Ac-DEX is unique from polyesters because its degradation products are pH neutral, and do not have the potential to shift the local pH or damage sensitive payloads. We have three specific aims exploring various optimizations of our particle system. Aim 1 is focused on formulation of the polymer and particles. The release rate of the adjuvant will be explored. Ac-DEX polymer with various cyclic acetal coverages will be fabricated to degrade over a broad range of times. In Aim 2 we will evaluate the effect of loading of a novel influenza antigen either on the surface or encapsulated into the MPs. We will explore degradation rates on antigen release as well as delivery routes in determining the optimal delivery of influenza antigens that provide a broad range of protection. In Aim 3 we will explore our optimized system in protecting ferrets. Ferrets are the ideal large animal model for influenza infection. Using this model, we will evaluate the vaccine efficacy of our formulation, in comparison to a commercially available flu vaccine.
抽象的 世界卫生组织估计每年约有 500 万例流感感染病例,其中约 全球有 50 万人死亡。预防流感最经济有效的方法是接种疫苗。 不幸的是,由于每年的抗原变化和漂移,目前的季节性疫苗无效。有需要 以获得更好的流感疫苗。为了设计更好的流感疫苗,我们计划使用优化免疫突触 由聚合物乙酰化葡聚糖 (Ac-DEX) 制成的纳米/微粒 (MP)。我们之前的数据有 显示了颗粒降解和针对流感抗原的最佳免疫反应的依赖性。不是 仅抗原的释放影响免疫反应,佐剂的释放也很重要。 与非佐剂和抗原的优化降解相比,存活率发生了巨大变化。 优化配方。我们的粒子系统是独一无二的,因为它依赖于高度可调的聚合物 Ac-DEX。 Ac-DEX 是向吞噬细胞递送药剂的理想选择,因为它对酸敏感并且具有显着的 吞噬体在低酸(~pH 5)下降解增加。除此之外,它还具有可调节的衰减 速率范围从几小时到几个月不等,这是与常用聚酯(例如聚酯纤维)不同的独特范围。 聚(乳酸-乙醇酸)(PLGA))的降解时间约为数月。此外,Ac-DEX 是独一无二的 来自聚酯,因为其降解产物的 pH 值为中性,并且没有可能改变局部 pH 值或损坏敏感有效负载。我们有三个具体目标来探索粒子的各种优化 系统。目标 1 侧重于聚合物和颗粒的配方。佐剂的释放速率为 探索过。具有各种环状缩醛覆盖度的 Ac-DEX 聚合物将被制造成在广泛的范围内降解 次。在目标 2 中,我们将评估新型流感抗原负载在表面或表面上的效果。 封装到 MP 中。我们将探索抗原释放的降解率以及递送途径 确定提供广泛保护的流感抗原的最佳递送方式。在目标 3 中,我们将 探索我们保护雪貂的优化系统。雪貂是流感感染的理想大型动物模型。 使用该模型,我们将评估我们配方的疫苗功效,并与商业疫苗进行比较 可用的流感疫苗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristy M Ainslie其他文献

Kristy M Ainslie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristy M Ainslie', 18)}}的其他基金

Mechanistic evaluation of mast cell agonists combined with TLR, NOD and STING agonists.
肥大细胞激动剂联合 TLR、NOD 和 STING 激动剂的机制评估。
  • 批准号:
    10657847
  • 财政年份:
    2023
  • 资助金额:
    $ 56.04万
  • 项目类别:
Diversity Supplement - Formulation to Generate Tolerance Towards Type 1 Diabetes
多样性补充剂 - 产生对 1 型糖尿病耐受性的配方
  • 批准号:
    10560761
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Tunable Temporal Drug Release for Optimized Synergistic Combination Therapy of Glioblastoma
可调节的时间药物释放,用于优化胶质母细胞瘤的协同联合治疗
  • 批准号:
    10449370
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
  • 批准号:
    10436981
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
  • 批准号:
    10713401
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Tunable Temporal Drug Release for Optimized Synergistic Combination Therapy of Glioblastoma
可调节的时间药物释放,用于优化胶质母细胞瘤的协同联合治疗
  • 批准号:
    10675073
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
  • 批准号:
    10310642
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
  • 批准号:
    10615119
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Tunable Temporal Drug Release for Optimized Synergistic Combination Therapy of Glioblastoma
可调节的时间药物释放,用于优化胶质母细胞瘤的协同联合治疗
  • 批准号:
    10309049
  • 财政年份:
    2021
  • 资助金额:
    $ 56.04万
  • 项目类别:
Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
  • 批准号:
    10328236
  • 财政年份:
    2020
  • 资助金额:
    $ 56.04万
  • 项目类别:

相似国自然基金

琥珀酸代谢重编逆转碳青霉烯耐药铜绿假单胞菌耐药性的研究
  • 批准号:
    32370191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
植物特有蛋白FENT响应脱落酸信号调控囊泡运输的分子机制研究
  • 批准号:
    32370329
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
钽铌酸钾晶体多效应耦合及光场调控极化序构的电光性能增益机制研究
  • 批准号:
    62305089
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
  • 批准号:
    82370423
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于胆汁酸介导的TGR5/GLP-1环路探究解毒通络调肝方调控肠肝轴改善T2DM-IR作用机制
  • 批准号:
    82374380
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

New Methods for the Synthesis of Biologically Active Compounds
合成生物活性化合物的新方法
  • 批准号:
    10551507
  • 财政年份:
    2023
  • 资助金额:
    $ 56.04万
  • 项目类别:
Hepatotoxic mechanisms of anti-HIV- and anti-COVID-19 drugs and substance use disorders
抗 HIV 和抗 COVID-19 药物和物质使用障碍的肝毒性机制
  • 批准号:
    10684434
  • 财政年份:
    2023
  • 资助金额:
    $ 56.04万
  • 项目类别:
Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
  • 批准号:
    10328236
  • 财政年份:
    2020
  • 资助金额:
    $ 56.04万
  • 项目类别:
Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
  • 批准号:
    9916920
  • 财政年份:
    2020
  • 资助金额:
    $ 56.04万
  • 项目类别:
Formation of C-C Bonds from Unactivated C(sp3)-H Bonds of Hydrosilanes Derived from Common Functional Groups
由常见官能团衍生的氢硅烷的未活化 C(sp3)-H 键形成 C-C 键
  • 批准号:
    10316163
  • 财政年份:
    2020
  • 资助金额:
    $ 56.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了