Identifying specific genetic pathway interactions for drug use and abuse through integrative omics
通过综合组学确定药物使用和滥用的特定遗传途径相互作用
基本信息
- 批准号:10663216
- 负责人:
- 金额:$ 54.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Addictive BehaviorAddressAffectAlcoholsCohort StudiesCommunitiesComplementComputing MethodologiesDataDiseaseDisease modelDrug abuseDrug usageEpigenetic ProcessEtiologyGenesGeneticGenomicsHereditary DiseaseHeritabilityHuman GenomeIndividualInterventionKnowledgeLinkMental HealthMethodsOutcomePathway interactionsPlayPopulationPreventionPublic HealthRegulationResearchRiskRoleSignal TransductionSubstance Use DisorderSystemTissuesaddictionalcohol comorbidityalcohol use disorderclinically actionablecohortcomorbiditydisorder preventionepigenomicsgenetic architecturegenetic risk factorgenetic variantgenome wide association studyhigh dimensionalityhigh risk populationinsightmachine learning algorithmmarijuana usemarijuana use disorderprecision medicineprogramsscreeningsoftware developmentsubstance usetranscriptomicswhole genome
项目摘要
PROJECT SUMMARY
Cannabis use disorders (CUD) are prevalent in the U.S., and highly comorbid with other substance use
disorders (SUD) such as alcohol use disorder (AUD), as well as with other mental health problems. While the
etiology of cannabis use/misuse have both environmental and genetic components, cannabis use and
problematic use are found to be highly heritable. Thus, studies that identify the genetic risk factors for CUD in
the general U.S. populations, and in the high-risk populations, are of high public health importance. However,
the genetic factors identified in the human genome thus far by conventional methods are sparse and appear to
have only captured a very small fraction of the overall heritability for the disorder. One key challenge in
addiction genetics is how to identify genetic interactions and epistatic regulations that may play a more
important role in determining risk for addictive behaviors than what gene variants do individually, and that may
help explain a critical part of the missing link. Genetic interactions have rarely been systematically considered
in studies of substance use, primarily due to lack of statistical power and shortage of computational
methodology. To address the challenge, we propose a framework to systematically detect disease-relevant
context specific genetic pathway interactions that underlie the risk for SUD. The framework will be applied to
CUD and comorbid AUD to identify crucial genetic interactions and pleiotropic interactions, filling a critical gap
in uncovering the genetic architectures of CUD. We will leverage genetic network and pathway topology and
integrate multiple layers of omics including genomics, transcriptomic and epigenomic signals in drug abuse
relevant tissues. By sharpening the focus on the functionally connected gene and regulation subsets through a
priori analyses, we will be able to dramatically boost the statistical power to detect genetic interactions, arrive
at highly biologically relevant and readily interpretable findings, and potentially provide clinically actionable
insights. The proposed study will utilize outcomes from large GWAS studies for CUD and AUD, together with
three high-risk population cohorts with elevated levels of severe cannabis and alcohol use disorders that have
whole genome sequence data. We will complement the context specific pathway-level interaction analysis with
high-dimensional variable screening machine-learning algorithms to identify both low and high order genetic
interactions and regulatory epistatic effects associated with CUD. The findings that are carefully validated
using independent study cohorts will be incorporated into a larger disease model of CUD for prediction and
potential intervention, and will open up new avenues of research by allowing interrogation of the addiction
genetics from a system’s level. The framework will be build in such a way that is readily transferable to other
SUD and mental health studies and sets the stage for a genetically and epigenetically informed, precision
medicine approach to SUD prevention and treatment. All software developed in the program will be freely
available to the research community.
项目概要
大麻使用障碍 (CUD) 在美国很普遍,并且与其他物质使用高度共存
疾病(SUD),例如酒精使用障碍(AUD),以及其他心理健康问题。
大麻使用/滥用的病因有环境和遗传因素,大麻的使用和滥用
发现有问题的使用具有高度遗传性,因此,研究确定了 CUD 的遗传风险因素。
然而,美国普通人群和高危人群具有很高的公共卫生重要性。
迄今为止,通过传统方法在人类基因组中鉴定出的遗传因素很少,而且似乎
仅捕获了该疾病总体遗传力的一小部分。
遗传成瘾是如何识别可能发挥更大作用的遗传相互作用和上位调节
在决定成瘾行为风险方面,比基因变异单独发挥的作用更重要,这可能
帮助解释缺失环节的关键部分很少被系统地考虑。
在物质使用研究中,主要是由于缺乏统计能力和计算能力
为了应对这一挑战,我们提出了一个系统检测疾病相关的框架。
该框架将应用于构成 SUD 风险的特定遗传途径相互作用。
CUD 和共病 AUD 可识别关键的遗传相互作用和多效性相互作用,填补关键空白
在揭示 CUD 的遗传结构时,我们将利用遗传网络和通路拓扑结构。
整合多层组学,包括药物滥用中的基因组学、转录组学和表观基因组信号
通过加强对功能相关基因和调控子集的关注。
先验分析,我们将能够显着提高检测遗传相互作用的统计能力,得出
高度生物学相关且易于解释的发现,并有可能提供临床上可操作的
拟议的研究将利用 CUD 和 AUD 的大型 GWAS 研究结果以及
三个严重大麻和酒精使用障碍水平升高的高危人群
我们将补充上下文特定的通路水平相互作用分析。
高维变量筛选机器学习算法来识别低阶和高阶遗传
与 CUD 相关的相互作用和监管上位效应经过仔细验证。
使用独立研究队列将被纳入更大的 CUD 疾病模型中进行预测和
潜在的干预措施,并将通过允许审讯成瘾开辟新的研究途径
该框架将以易于转移到其他系统的方式构建。
SUD 和心理健康研究并为遗传和表观遗传的精确研究奠定了基础
该计划中开发的所有软件都将免费。
可供研究界使用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qian Peng其他文献
Qian Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qian Peng', 18)}}的其他基金
Identifying specific genetic pathway interactions for drug use and abuse through integrative omics
通过综合组学确定药物使用和滥用的特定遗传途径相互作用
- 批准号:
10461185 - 财政年份:2021
- 资助金额:
$ 54.3万 - 项目类别:
Identifying specific genetic pathway interactions for drug use and abuse through integrative omics
通过综合组学确定药物使用和滥用的特定遗传途径相互作用
- 批准号:
10294110 - 财政年份:2021
- 资助金额:
$ 54.3万 - 项目类别:
Big data analytics for the evaluation of whole genome sequence and transcriptome data in alcohol research
大数据分析用于评估酒精研究中的全基因组序列和转录组数据
- 批准号:
9321946 - 财政年份:2016
- 资助金额:
$ 54.3万 - 项目类别:
Big data analytics for the evaluation of whole genome sequence and transcriptome data in alcohol research
大数据分析用于评估酒精研究中的全基因组序列和转录组数据
- 批准号:
9981554 - 财政年份:2016
- 资助金额:
$ 54.3万 - 项目类别:
Big data analytics for the evaluation of whole genome sequence and transcriptome data in alcohol research
大数据分析用于评估酒精研究中的全基因组序列和转录组数据
- 批准号:
9753834 - 财政年份:2016
- 资助金额:
$ 54.3万 - 项目类别:
Big data analytics for the evaluation of whole genome sequence and transcriptome data in alcohol research
大数据分析用于评估酒精研究中的全基因组序列和转录组数据
- 批准号:
9161317 - 财政年份:2016
- 资助金额:
$ 54.3万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
New Technologies for Accelerating the Discovery and Characterization of Neuroactives that Address Substance Use Disorders
加速发现和表征解决药物使用障碍的神经活性物质的新技术
- 批准号:
10680754 - 财政年份:2023
- 资助金额:
$ 54.3万 - 项目类别:
Genetics of novelty seeking and propensity for drug abuse in outbred rats
近交系大鼠寻求新奇事物的遗传学和药物滥用倾向
- 批准号:
10669951 - 财政年份:2023
- 资助金额:
$ 54.3万 - 项目类别:
Project 1: The Reciprocal Relationship between Binge Drinking and Astrocytic Signaling
项目 1:酗酒与星形胶质细胞信号传导之间的相互关系
- 批准号:
10705859 - 财政年份:2022
- 资助金额:
$ 54.3万 - 项目类别:
Orexin modulation of brain reward-brain stress system interactions in alcohol withdrawal anxiety
食欲素调节酒精戒断焦虑中大脑奖赏-大脑应激系统相互作用
- 批准号:
10302090 - 财政年份:2022
- 资助金额:
$ 54.3万 - 项目类别: