Computational analysis of single-nucleus sequencing data for studying the cell type-specific basis of opioid use disorders

单核测序数据的计算分析,用于研究阿片类药物使用障碍的细胞类型特异性基础

基本信息

  • 批准号:
    10663815
  • 负责人:
  • 金额:
    $ 2.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The opioid epidemic is a public health crisis that affects almost two million people in the United States and costs billions of dollars annually. The chronic use of opioids can lead to tolerance, dependence, and in the most severe cases, addiction. Addiction is characterized by compulsive drug-seeking behavior despite negative consequences, as well as a propensity for relapse even after extended periods of abstinence. This suggests that compulsive drug use induces persistent changes in key brain regions which persist following cessation of drug use that give rise to addiction-related behaviors. Increasing evidence indicates that persistent changes in gene expression might be a critical mechanism by which drugs of abuse lead to changes in neural circuits associated to addictive behaviors. Exposure to addictive drugs causes widespread transcriptional changes across various brain cell types. However, the genes affected by drugs of abuse in distinct brain cell types and the regulatory pathways that drive these changes remain mostly unclear. Additionally, most genetic variants associated with addiction are found in noncoding genomic regions and frequently located in cell type-specific enhancers and promoters. These observations indicate that persistent changes in gene expression associated with opioid addiction and the transcriptional regulatory pathways that drive these changes are likely cell type-specific. However, existing knowledge in this area has largely been based on bulk sequencing heterogeneous samples from key brain regions, which cannot capture cell type-specific signals. Single-cell sequencing data is uniquely capable of detecting molecular differences across different cell types, but single-cell studies of opioid addiction have been limited to blood cells or acute drug treatment. This has impeded a higher resolution understanding of the mechanisms involved in long-term drug-induced neurobiological changes and susceptibility to addiction. This proposal will computationally analyze novel single-nucleus RNA-seq (snRNA-seq) and single- nucleus ATAC-seq (snATAC-seq) data generated from a validated rat model of extended access oxycodone self-administration to study the molecular basis of opioid use disorders (OUDs) at single cell resolution. Cell type-specific comparisons of gene expression and chromatin accessibility between rats selected as vulnerable versus resistant to behavioral measures of addiction will be conducted to reveal the long-term effects of compulsive opioid use in specific brain cell types and identify putative regulatory relationships. Statistical models and deep learning will also be used to develop a framework for identifying the functional effects of noncoding genetic variants and improve understanding of genetic risk in OUDs. This work is clinically significant and will contribute to a better understanding of OUDs and identify regulatory mechanisms as therapeutic targets to improve OUD treatment approaches.
项目摘要 阿片类药物流行是一种公共卫生危机,影响了美国近200万人 每年耗资数十亿美元。长期使用阿片类药物会导致耐受性,依赖性和 最严重的情况,成瘾。成瘾的特征是强迫性毒品行为 负面后果以及复发的倾向,即使在戒酒长期之后也是如此。这 表明强迫毒品使用会导致关键大脑区域的持续变化,这些区域持续存在 停止吸毒引起与成瘾有关的行为。 越来越多的证据表明,基因表达的持续变化可能是关键 滥用药物导致与成瘾行为相关的神经回路变化的机制。 暴露于上瘾的药物会导致各种脑细胞类型的广泛转录变化。 但是,在不同的脑细胞类型中受滥用药物影响的基因以及 驱动这些变化仍然不清楚。此外,大多数与成瘾相关的遗传变异是 在非编码基因组区域发现,并且经常位于细胞类型特异性增强子和启动子中。 这些观察结果表明,与阿片类药物成瘾相关的基因表达的持续变化和 驱动这些变化的转录调节途径可能特定于细胞类型。但是,存在 该领域的知识主要基于批量测序的关键大脑的异质样品 区域,该区域无法捕获特定于细胞类型的信号。单细胞测序数据具有独特的能力 检测不同细胞类型之间的分子差异,但是阿片类成瘾的单细胞研究一直是 仅限于血细胞或急性药物治疗。这阻碍了对 长期药物引起的神经生物学变化和对成瘾的敏感性涉及的机制。 该建议将通过计算分析新型的单核RNA-seq(SnRNA-Seq)和单核 核ATAC-SEQ(SNATAC-SEQ)数据是从经过验证的扩展访问羟考酮模型产生的 在单细胞分辨率下研究阿片类药物使用障碍(OUDS)的分子基础的自我管理。细胞 被选为脆弱的大鼠之间的基因表达和染色质可及性的特定类型比较 将进行对成瘾行为措施的抵抗,以揭示 在特定的脑细胞类型中使用强迫性阿片类药物并识别推定的调节关系。统计 模型和深度学习也将用于开发一个框架,以识别 非编码遗传变异并提高对OUD遗传风险的理解。这项工作在临床上 重要的并将有助于更好地理解Ouds,并确定监管机制 改善OUD治疗方法的治疗靶标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

相似国自然基金

趋化因子CXCL14在胚胎植入中的作用及机制研究
  • 批准号:
    30670785
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
人工泵式括约肌对去肛门括约肌犬节制排便的实验研究
  • 批准号:
    39670706
  • 批准年份:
    1996
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Providing Tobacco Treatment to Patients Undergoing Lung Cancer Screening at MedStar Health: A Randomized Trial
为 MedStar Health 接受肺癌筛查的患者提供烟草治疗:一项随机试验
  • 批准号:
    10654115
    10654115
  • 财政年份:
    2023
  • 资助金额:
    $ 2.64万
    $ 2.64万
  • 项目类别:
Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
  • 批准号:
    10831206
    10831206
  • 财政年份:
    2023
  • 资助金额:
    $ 2.64万
    $ 2.64万
  • 项目类别:
Comparative Risk of Oral Complications Associated with Medications for Opioid Use Disorder: A Mixed-Methods Approach
与阿片类药物使用障碍药物相关的口腔并发症的风险比较:混合方法
  • 批准号:
    10765049
    10765049
  • 财政年份:
    2023
  • 资助金额:
    $ 2.64万
    $ 2.64万
  • 项目类别:
Multifunctional Nanoparticle Platform to Prevent Alcohol-Associated HCC Development
多功能纳米颗粒平台可预防酒精相关的 HCC 发展
  • 批准号:
    10736984
    10736984
  • 财政年份:
    2023
  • 资助金额:
    $ 2.64万
    $ 2.64万
  • 项目类别:
Determining the Influence of Clinicodemographic, Biologic and SDOH Factors in Racial and Ethnic Disparities in the Prognosis of Alcohol-Associated Liver Disease
确定临床人口统计学、生物和 SDOH 因素对酒精相关性肝病预后中种族和民族差异的影响
  • 批准号:
    10785492
    10785492
  • 财政年份:
    2023
  • 资助金额:
    $ 2.64万
    $ 2.64万
  • 项目类别: