Depleting Somatostatinergic Neurons Recapitulates Diabetic Phenotypes In Brain and Adipose Tissue
消耗生长抑素能神经元重现大脑和脂肪组织中的糖尿病表型
基本信息
- 批准号:10536358
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAddressAdipose tissueAdrenergic ReceptorAffectAgonistAmericanAnimal ModelAnti-Inflammatory AgentsBindingBlood GlucoseBrainBrain regionBypassCardiovascular systemCatecholaminesChronicClinicalComplexDataDevelopmentDietDiseaseDisease modelDown-RegulationEncephalitisExhibitsFDA approvedFastingFunctional disorderGlucose IntoleranceGlucose tolerance testGlycineGoalsHealthHigh Fat DietHyperactivityHyperinsulinismHypothalamic structureImpairmentInflammationInflammatoryInsulinInsulin ResistanceInterventionKidneyLinkLipolysisLiverMeasuresMediatingMesenteryMetabolic Brain DiseasesMetabolic syndromeMetabolismMissionModelingMusNational Institute of Diabetes and Digestive and Kidney DiseasesNerveNeuronsNeurotransmittersNon-Insulin-Dependent Diabetes MellitusNonesterified Fatty AcidsNorepinephrinePancreasPathologyPeptidesPharmacologyPhenotypePhysiciansPhysiological ProcessesPopulationPrimatesPropertyPublic HealthRegulationResearchResistanceRiskRisk FactorsRodentRoleScientistSignal TransductionSomatostatinSympathetic Nervous SystemSympatholyticsSystemTechniquesTestingTissuesTrainingTriglyceridesVisceralantagonistblood glucose regulationbody systembrain tissueclinically significantcomparativecytokinedesensitizationdiabeticdietarydisabilitydrug repurposingexperimental studyfeedinggamma-Aminobutyric Acidglucose metabolismglucose uptakeimprovedinsightinsulin signalinginsulin tolerancemortalitymortality riskmouse modelnovelreceptorresponsesaturated fatskillssomatostatin analog
项目摘要
Project Summary
Type 2 diabetes (T2D) and metabolic syndrome (METS) are a major public health crisis affecting one in three
Americans. Though many treatments exist for these diseases, none target brain inflammation. This gap is
important because animal models show rapid induction of inflammation in metabolism regulating brain regions
such as the hypothalamus, particularly upon saturated fat exposure. Hypothalamic inflammation is a key cause
of chronic sympathetic nervous system (SNS) hyperactivity.
The SNS regulates most tissues through norepinephrine, a catecholamine neurotransmitter which binds and
adrenergic receptors (-AR). In T2D and METS, sympathetic nerves are hyperactive in many tissues,
including white adipose tissue. In healthy adipose tissue, sympathetic nerves drive lipolysis: the release of free
fatty acids, and the exogenous stimulation of this circuit clinically promotes glucose homeostasis. However, in
the disease state, adipose tissue downregulates -AR and exhibits impaired lipolysis in response to SNS input
(adipose catecholamine resistance). Chronically hyperactive sympathetic nerves could drive -AR
downregulation, but no data directly show this at present, which hampers approaches to restoring endogenous
catecholamine sensitivity and improving glucose homeostasis.
In the present study, we ablate somatostatinergic (SST) neurons, an endogenous anti-inflammatory cellular
population, in the paraventricular region of hypothalamus. This intervention induces both hypothalamic
inflammation and visceral adipose catecholamine resistance, but no detailed studies of insulin/glucose
homeostasis or sympathetic nerve activity have been performed in this model under chow or high fat diet
feeding. Thus, our central hypothesis is that the ablation of hypothalamic SST neurons (SST-DTA) will
exacerbate HFD induced visceral adipose catecholamine resistance and glucose intolerance by
increasing hypothalamic inflammation and adipose sympathetic nerve activity. This hypothesis makes
the prediction that SST-DTA drives adipose catecholamine resistance by increasing sympathetic nerve activity.
Thus, our objective is to elucidate the consequences of ablating hypothalamic somatostatinergic neurons on
adipose sympathetic nerve activity, adipose catecholamine resistance, and glucose homeostasis, under
normal diet and HFD. This is in line with the mission of the NIDDK because it addresses important basic and
translational aspects of the development of METS and T2D. As a result of the proposed studies, we expect to
develop novel targets in the regulation of SNS activity which should prove useful in restoring adipose tissue
sensitivity to catecholamines. Importantly, somatostatin analogues are already FDA approved and can target
the hypothalamus, which suggests our data could support a drug repurposing approach to treating
hypothalamic inflammation and restoring adipose tissue lipolytic function. Completion of this proposal will also
contribute to my training as a physician scientist through the acquisition of key techniques and essential skills.
项目摘要
2型糖尿病(T2D)和代谢综合征(METS)是影响三分之一的主要公共卫生危机
美国人。尽管这些疾病存在许多治疗方法,但没有任何靶向大脑感染。这个差距是
重要的是因为动物模型显示了调节大脑区域的代谢中炎症的迅速诱导
例如下丘脑,特别是在饱和脂肪暴露时。下丘脑炎症是关键原因
慢性交感神经系统(SNS)多动症。
社交媒体通过去甲醇的神经递质来调节大多数组织,该神经肾上腺素的结合和
肾上腺素受体(-AR)。在T2D和Mets中,交感神经在许多组织中都是多动的,
包括白脂肪组织。在健康的脂肪组织中,交感神经驱动脂解:释放游离
脂肪酸和该电路的外源刺激临床促进葡萄糖稳态。但是,在
疾病状态,脂肪组织下调了-AR,并表现出脂肪分解受损而响应SNS输入
(脂肪儿茶酚胺耐药性)。慢性多动交感神经可能会驱动-ar
下调,但目前没有数据直接显示这一点,这阻碍了恢复内源性
儿茶酚胺敏感性和改善葡萄糖稳态。
在本研究中,我们烧毁了内源性抗炎细胞的生长抑素能(SST)神经元
人口,在下丘脑的室室中。这种干预诱发了下丘脑
炎症和内脏脂肪儿茶酚胺耐药性,但没有详细研究胰岛素/葡萄糖
在Chow或高脂饮食下,在该模型中进行了体内平衡或交感神经活动
进食。这就是我们的中心假设是下丘脑SST神经元(SST-DTA)的消融
恶化的HFD诱导内脏脂肪儿茶酚胺耐药性和葡萄糖耐药性
下丘脑炎症和脂肪交感神经活动的增加。这个假设提出了
SST-DTA通过增加交感神经活动来驱动脂肪儿茶酚胺耐药性的预测。
这是我们的目标是阐明消融下丘脑生长抑素能神经元对
在
正常饮食和HFD。这符合NIDDK的使命,因为它解决了重要的基本和
Mets和T2D发展的翻译方面。由于拟议的研究,我们希望
在调节SNS活性的调节中开发新的靶标,这应该被证明可用于恢复脂肪组织
对儿茶酚胺的敏感性。重要的是,生长抑素类似物已经被FDA批准,可以针对
下丘脑表明我们的数据可以支持治疗药物的方法
下丘脑炎症和恢复脂肪组织脂解功能。该提议的完成也将
通过获得关键技术和基本技能,为我作为物理科学家的培训做出了贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert F Rosencrans其他文献
Robert F Rosencrans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert F Rosencrans', 18)}}的其他基金
Depleting Somatostatinergic Neurons Recapitulates Diabetic Phenotypes In Brain and Adipose Tissue
消耗生长抑素能神经元重现大脑和脂肪组织中的糖尿病表型
- 批准号:
10647698 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别: