Mechanisms underlying the effects of time-restricted feeding on lipid metabolism
限时喂养对脂质代谢影响的机制
基本信息
- 批准号:10537006
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAgeAgingAmericanAnimal ModelAnimalsAutomobile DrivingAutophagocytosisBlood GlucoseBody Weight decreasedBrainCandidate Disease GeneCardiovascular DiseasesCatabolismCircadian gene expressionClustered Regularly Interspaced Short Palindromic RepeatsDataDietDietary ComponentDietary InterventionDrosophila genusDrosophila melanogasterEatingEnergy IntakeFastingFat BodyFatty acid glycerol estersFoodGene ExpressionGenerationsGenesGeneticGoalsHealthHealth BenefitHigh Fat DietHourHumanInflammationInsulin ResistanceIntestinesLifeLightLinkLipidsLongevityMammalsMediatingMetabolic PathwayMetabolismModelingMolecularMusMuscleNon-Insulin-Dependent Diabetes MellitusObesityOrganOrganismOxidative StressPathologyPathway interactionsPeripheralPersonsPhenotypePhysiologicalResearchResistanceRoleSleepStarvationTestingTherapeuticThin Layer ChromatographyTimeTime-restricted feedingTimeLineTissuesWorkage effectanti agingcircadiancircadian pacemakercircadian regulationcomorbiditydiet-induced obesitydifferential expressionexperimental studyfeedingflyhealthspanhuman old age (65+)improvedinterestknock-downlipid metabolismmutantobesity preventionobesity riskpreventprotein aggregationsugartooltranscriptome sequencing
项目摘要
Project Summary
Today, we live in an age of unprecedented access to food. Recent research suggests that many Americans eat
from the time they wake up to the time they go to sleep. Night eating, specifically, is linked to several aging-
related comorbidities, including obesity, cardiovascular disease, and type-2 diabetes. While much ongoing
research investigates the mechanisms by which dietary components affect metabolism, it is less understood how
the timing of feeding affects metabolism. To this end, dietary interventions that alter the timing of feeding have
been shown to protect many aspects of health, even without reducing caloric intake. Time-restricted feeding
(TRF) diets have been shown in mice and humans to reduce oxidative stress and inflammation, decrease insulin
resistance, lower blood sugar. In mice, TRF has been shown to reduce fat levels, protect against a high-fat diet,
and prevent obesity. Using Drosophila melanogaster, the Shirasu-Hiza lab developed a robust TRF diet that
extends lifespan and delays molecular signs of aging, such as protein aggregation, and showed that TRF
enhances circadian gene expression and requires the circadian clock to confer lifespan benefits. In addition, we
found that TRF seems to reprogram lipid metabolism; after TRF treatment, flies responded to fasting by utilizing
lipids much faster than controls, leading to increased rate of triacylglyceride loss and starvation sensitivity. I
found that this TRF-accelerated lipid usage, like TRF-induced lifespan extension, requires circadian components
but, unlike TRF-induced lifespan extension, does not require autophagy components. Because the underlying
mechanisms remain unclear, I propose to identify molecular components that drive the effects of TRF on lipid
metabolism. I will use Drosophila melanogaster, an advantageous model organism for this work because: many
mammalian metabolic pathways are conserved in flies; flies have short generation time (2-3 months); and flies
offer a plethora of powerful genetic tools. Aim 1 will identify specific tissue(s) in which circadian regulators are
required for TRF-accelerated lipid usage. Aim 2 will examine the molecular mechanisms by which TRF changes
lipid metabolism. I will use RNA-sequencing analysis to identify transcriptional differences between TRF-treated
flies and their controls; significantly differentially expressed genes and/or pathways will be assessed for their
functional role in TRF-accelerated lipid usage. Aim 3 will investigate the therapeutic potential of TRF in diet-
induced obesity. Flies fed a high-sugar diet and have hallmarks of obesity will be treated with TRF to test if
obesity-related phenotypes are ameliorated upon TRF treatment; we will test both young and old flies. These
experiments will determine the molecular mechanisms connecting TRF to lipid metabolism and how TRF can be
used to ameliorate obesity- and aging-related pathologies. This will improve our understanding on how TRF can
confer health span benefits while also testing its therapeutic potential in aging-related, diet-induced obesity.
项目概要
今天,我们生活在一个前所未有地获得食物的时代。最近的研究表明,许多美国人吃
从他们醒来到入睡。具体来说,夜间饮食与多种衰老有关——
相关合并症,包括肥胖、心血管疾病和 2 型糖尿病。虽然很多事情正在进行中
研究调查了饮食成分影响新陈代谢的机制,但人们对如何影响新陈代谢的了解还较少
喂食时间影响新陈代谢。为此,改变喂养时间的饮食干预已
事实证明,即使不减少热量摄入,也能保护健康的许多方面。限时喂食
(TRF) 饮食已在小鼠和人类中被证明可以减少氧化应激和炎症,降低胰岛素水平
抵抗力、降低血糖。在小鼠中,TRF 已被证明可以降低脂肪水平,防止高脂肪饮食,
并预防肥胖。 Shirasu-Hiza 实验室利用黑腹果蝇开发了一种强大的 TRF 饮食,
延长寿命并延缓衰老的分子迹象,例如蛋白质聚集,并表明 TRF
增强昼夜节律基因表达,并需要生物钟来赋予寿命益处。此外,我们
发现 TRF 似乎可以重新编程脂质代谢; TRF 处理后,果蝇通过利用
脂质的增加速度比对照组快得多,导致三酰甘油损失率和饥饿敏感性增加。我
发现这种 TRF 加速的脂质使用,就像 TRF 诱导的寿命延长一样,需要昼夜节律成分
但与 TRF 诱导的寿命延长不同,它不需要自噬成分。因为底层
机制尚不清楚,我建议确定驱动 TRF 对脂质影响的分子成分
代谢。我将使用果蝇,这是这项工作的一种有利的模式生物,因为:
哺乳动物的代谢途径在果蝇中是保守的;苍蝇世代时间短(2-3个月);和苍蝇
提供了大量强大的遗传工具。目标 1 将确定昼夜节律调节因子所在的特定组织
TRF 加速脂质使用所需。目标 2 将检查 TRF 变化的分子机制
脂质代谢。我将使用 RNA 测序分析来识别 TRF 处理之间的转录差异
苍蝇及其控制措施;将评估显着差异表达的基因和/或途径
TRF 加速脂质使用中的功能作用。目标 3 将研究 TRF 在饮食中的治疗潜力
诱发肥胖。喂食高糖饮食并具有肥胖特征的苍蝇将接受 TRF 治疗,以测试是否
TRF 治疗后肥胖相关表型得到改善;我们将测试年轻和年老的果蝇。这些
实验将确定 TRF 与脂质代谢之间的分子机制以及 TRF 如何发挥作用
用于改善肥胖和衰老相关的病症。这将加深我们对 TRF 如何发挥作用的理解
赋予健康跨度益处,同时还测试其在与衰老相关的饮食引起的肥胖方面的治疗潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Anthony Gatto其他文献
Jared Anthony Gatto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: