Mechanisms underlying the effects of time-restricted feeding on lipid metabolism
限时喂养对脂质代谢影响的机制
基本信息
- 批准号:10537006
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAgeAgingAmericanAnimal ModelAnimalsAutomobile DrivingAutophagocytosisBlood GlucoseBody Weight decreasedBrainCandidate Disease GeneCardiovascular DiseasesCatabolismCircadian gene expressionClustered Regularly Interspaced Short Palindromic RepeatsDataDietDietary ComponentDietary InterventionDrosophila genusDrosophila melanogasterEatingEnergy IntakeFastingFat BodyFatty acid glycerol estersFoodGene ExpressionGenerationsGenesGeneticGoalsHealthHealth BenefitHigh Fat DietHourHumanInflammationInsulin ResistanceIntestinesLifeLightLinkLipidsLongevityMammalsMediatingMetabolic PathwayMetabolismModelingMolecularMusMuscleNon-Insulin-Dependent Diabetes MellitusObesityOrganOrganismOxidative StressPathologyPathway interactionsPeripheralPersonsPhenotypePhysiologicalResearchResistanceRoleSleepStarvationTestingTherapeuticThin Layer ChromatographyTimeTime-restricted feedingTimeLineTissuesWorkage effectanti agingcircadiancircadian pacemakercircadian regulationcomorbiditydiet-induced obesitydifferential expressionexperimental studyfeedingflyhealthspanhuman old age (65+)improvedinterestknock-downlipid metabolismmutantobesity preventionobesity riskpreventprotein aggregationsugartooltranscriptome sequencing
项目摘要
Project Summary
Today, we live in an age of unprecedented access to food. Recent research suggests that many Americans eat
from the time they wake up to the time they go to sleep. Night eating, specifically, is linked to several aging-
related comorbidities, including obesity, cardiovascular disease, and type-2 diabetes. While much ongoing
research investigates the mechanisms by which dietary components affect metabolism, it is less understood how
the timing of feeding affects metabolism. To this end, dietary interventions that alter the timing of feeding have
been shown to protect many aspects of health, even without reducing caloric intake. Time-restricted feeding
(TRF) diets have been shown in mice and humans to reduce oxidative stress and inflammation, decrease insulin
resistance, lower blood sugar. In mice, TRF has been shown to reduce fat levels, protect against a high-fat diet,
and prevent obesity. Using Drosophila melanogaster, the Shirasu-Hiza lab developed a robust TRF diet that
extends lifespan and delays molecular signs of aging, such as protein aggregation, and showed that TRF
enhances circadian gene expression and requires the circadian clock to confer lifespan benefits. In addition, we
found that TRF seems to reprogram lipid metabolism; after TRF treatment, flies responded to fasting by utilizing
lipids much faster than controls, leading to increased rate of triacylglyceride loss and starvation sensitivity. I
found that this TRF-accelerated lipid usage, like TRF-induced lifespan extension, requires circadian components
but, unlike TRF-induced lifespan extension, does not require autophagy components. Because the underlying
mechanisms remain unclear, I propose to identify molecular components that drive the effects of TRF on lipid
metabolism. I will use Drosophila melanogaster, an advantageous model organism for this work because: many
mammalian metabolic pathways are conserved in flies; flies have short generation time (2-3 months); and flies
offer a plethora of powerful genetic tools. Aim 1 will identify specific tissue(s) in which circadian regulators are
required for TRF-accelerated lipid usage. Aim 2 will examine the molecular mechanisms by which TRF changes
lipid metabolism. I will use RNA-sequencing analysis to identify transcriptional differences between TRF-treated
flies and their controls; significantly differentially expressed genes and/or pathways will be assessed for their
functional role in TRF-accelerated lipid usage. Aim 3 will investigate the therapeutic potential of TRF in diet-
induced obesity. Flies fed a high-sugar diet and have hallmarks of obesity will be treated with TRF to test if
obesity-related phenotypes are ameliorated upon TRF treatment; we will test both young and old flies. These
experiments will determine the molecular mechanisms connecting TRF to lipid metabolism and how TRF can be
used to ameliorate obesity- and aging-related pathologies. This will improve our understanding on how TRF can
confer health span benefits while also testing its therapeutic potential in aging-related, diet-induced obesity.
项目摘要
今天,我们生活在空前获得食物的时代。最近的研究表明,许多美国人吃
从他们醒来到入睡的时间。特别是夜间吃与几个老化有关的
相关的合并症,包括肥胖,心血管疾病和2型糖尿病。虽然正在进行很多
研究调查了饮食成分影响新陈代谢的机制,尚不清楚如何
喂养的时机会影响新陈代谢。为此,改变喂养时间的饮食干预措施有
被证明可以保护健康的许多方面,即使没有减少热量摄入量。时间限制的喂养
(TRF)在小鼠和人类中已经显示了饮食以减少氧化应激和炎症,减少胰岛素
抗性,较低的血糖。在小鼠中,TRF已显示可降低脂肪水平,防止高脂饮食,
并防止肥胖。 Shirasu-Hiza Lab使用果蝇Melanogaster开发了一种强大的TRF饮食
延长寿命并延迟衰老的分子体征,例如蛋白质聚集,并表明TRF
增强昼夜节律的表达,并需要昼夜节律赋予寿命益处。另外,我们
发现TRF似乎重新编程了脂质代谢。 TRF治疗后,苍蝇通过利用而响应禁食
脂质比对照更快,导致三酰基甘油三酸酯损失和饥饿敏感性增加。我
发现这种TRF加速的脂质使用(例如TRF诱导的寿命延长)需要昼夜节律组件
但是,与TRF诱导的寿命扩展不同,不需要自噬组件。因为基础
机制尚不清楚,我建议确定驱动TRF对脂质影响的分子成分
代谢。我将使用果蝇Melanogaster,这是这项工作的有利模型有机体,因为:许多
哺乳动物的代谢途径在苍蝇中保守;苍蝇的生成时间很短(2-3个月);和苍蝇
提供大量强大的遗传工具。 AIM 1将识别昼夜节律调节器的特定组织
trf加速脂质的使用所需。 AIM 2将检查TRF改变的分子机制
脂质代谢。我将使用RNA序列分析来识别TRF处理的转录差异
苍蝇及其控制;将评估明显差异表达的基因和/或途径
在TRF加速脂质使用中的功能作用。 AIM 3将研究TRF在饮食中的治疗潜力 -
诱发肥胖。喂养高糖饮食的苍蝇,并具有肥胖标志,将用TRF治疗,以测试是否存在
TRF治疗后,与肥胖相关的表型得到改善;我们将测试年轻的和老苍蝇。这些
实验将确定将TRF连接到脂质代谢的分子机制以及如何成为TRF
用于改善肥胖症和衰老相关的病理。这将提高我们对TRF的理解
赋予健康跨度的益处,同时还测试其在与衰老相关的,饮食引起的肥胖症中的治疗潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Anthony Gatto其他文献
Jared Anthony Gatto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
- 批准号:
10723580 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: