Developing a Temporally-Regulated Gene Therapy for Therapeutic Angiogenesis
开发用于治疗性血管生成的时间调控基因疗法
基本信息
- 批准号:10535141
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:AffectAlternative TherapiesAngiogenic FactorAngioplastyArteriesBehaviorBiocompatible MaterialsBiologicalBlood VesselsBlood flowBostonBypassCardiovascular DiseasesCause of DeathCell TherapyCellsCessation of lifeChronicClinicClinical TrialsComplexDevelopmentDoseEndothelial CellsEngineeringEventGene DeliveryGene ExpressionGene Expression RegulationGenerationsGenesGeneticGrantGrowthGrowth FactorGrowth Factor GeneHalf-LifeHealthHindlimbHypoxiaHypoxia Inducible FactorImmunotherapyImpairmentIn VitroIschemiaMaturation-Promoting FactorMeasuresMentorsModelingMolecularOperative Surgical ProceduresOxygenPatientsPerfusionPersonsPlayProcessProliferatingQuality of lifeRecombinant ProteinsRecoveryRegenerative MedicineResponse ElementsRoleSignal TransductionSiteStrokeSwitch GenesTestingTissue EngineeringTissuesTrainingTranscriptional RegulationTranslatingTubeUniversitiesVascular blood supplyVascularizationWritingangiogenesiscareercellular engineeringcollaborative environmentcomorbiditycostdesigndisabilityexperiencegene therapygenetic elementgenetically modified cellsimprovedin vitro Modelin vivoin vivo Modelinsightinterestischemic cardiomyopathynext generationnovelparacrinepatient populationrecruitsensorstem cellssuccesssymposiumsynthetic biologytherapeutic angiogenesistool
项目摘要
Project Summary/Abstract
Cardiovascular diseases affect millions of patients worldwide and account for nearly a third of deaths globally.
Ischemia, or a reduced blood supply, occurs in many cardiovascular diseases and is a pressing health challenge.
While current treatments primarily focus on re-vascularization of existing blood vessels, a significant sub-
population of patients are unable to tolerate the associated surgical procedures due to existing comorbidities.
Thus, there is great interest in developing strategies for therapeutic angiogenesis, which seeks to stimulate new
vascularization at the ischemic site. While many gene and cell therapies for therapeutic angiogenesis have been
tested in clinical trials, a clear benefit for patients remains to be seen. To date, most gene therapies deliver one
or two genes to the ischemic site, while cell therapies deliver progenitor or stem cells to produce paracrine factors
and self-organize into vasculature. A central limitation of these therapies is the inability to control the
temporal presentation of the expressed genes or secreted factors. Angiogenesis is a complex and
temporally regulated process, in which angiogenic factors first initiate the formation of a primitive vascular
network before maturation factors promote mural cell recruit and vessel stabilization. While studies with growth
factors suggest that sequential delivery of angiogenic and maturation factors is beneficial for establishing
functional vasculature, how the timing of the angiogenic-to-maturation transition impacts the functionality of the
established vasculature is unknown. How tissues naturally sense the correct timing for the angiogenic-to-
maturation transition is also unclear, but incorporating a sensor to regulate the expression of angiogenic and
maturation genes would be beneficial for creating a gene therapy with controlled dosing and minimal off-target
effects. In this proposal, synthetic biology tools will be combined with engineered models of vascularization and
an in vivo model of hindlimb ischemia to evaluate how the timing of angiogenic and maturation gene expression
impacts functional vascular network formation and recovery from ischemia. In Aim 1, a two-channel genetic
switch will be used to establish the relationship between the timing of the angiogenic-to-maturation transition and
vascular network functionality. In Aim 2, hypoxia response elements will be used to generate a hypoxia-regulated
genetic switch to control the induction of angiogenic and maturation genes. The genetic switch will be evaluated
for its ability to rescue perfusion in an in vivo hindlimb ischemia model. The associated training plan will prepare
the fellow for an academic career by enabling the fellow to obtain new skillsets in synthetic biology and in vivo
models. The fellow will have many opportunities for professional development through mentoring, networking,
attending conferences, and experience with grant writing. The fellow will train in the Biological Design Center at
Boston University, which holds extensive expertise in molecular, cellular, and tissue engineering and presents
an interdisciplinary and collaborative environment for the fellow to develop scientifically and professionally.
项目概要/摘要
心血管疾病影响着全球数百万患者,占全球死亡人数的近三分之一。
缺血或血液供应减少发生在许多心血管疾病中,是一个紧迫的健康挑战。
虽然目前的治疗主要集中于现有血管的血运重建,但一个重要的亚
由于现有的合并症,患者群体无法耐受相关的手术程序。
因此,人们对开发治疗性血管生成策略非常感兴趣,该策略旨在刺激新的血管生成。
缺血部位的血管化。虽然许多用于治疗性血管生成的基因和细胞疗法已被
经过临床试验测试,对患者的明显益处仍有待观察。迄今为止,大多数基因疗法都提供一种
或两个基因到达缺血部位,而细胞疗法则递送祖细胞或干细胞以产生旁分泌因子
并自组织成脉管系统。这些疗法的一个主要限制是无法控制
表达基因或分泌因子的时间呈现。血管生成是一个复杂且
时间调节过程,其中血管生成因子首先启动原始血管的形成
成熟因子之前的网络促进壁细胞募集和血管稳定。在学习与成长的同时
因素表明,血管生成因子和成熟因子的顺序递送有利于建立
功能性脉管系统,血管生成到成熟转变的时间如何影响功能性脉管系统
已建立的脉管系统未知。组织如何自然地感知血管生成的正确时机
成熟转变也不清楚,但结合传感器来调节血管生成和血管生成的表达
成熟基因将有利于创建剂量受控和脱靶最小化的基因疗法
影响。在该提案中,合成生物学工具将与血管化和工程模型相结合
后肢缺血的体内模型,用于评估血管生成和成熟基因表达的时间
影响功能性血管网络的形成和缺血的恢复。在目标 1 中,双通道遗传
开关将用于建立血管生成到成熟转变的时间与
血管网络功能。在目标 2 中,缺氧反应元件将用于产生缺氧调节的
控制血管生成和成熟基因诱导的基因开关。基因开关将被评估
因其能够在体内后肢缺血模型中挽救灌注。相关培训计划将制定
通过使研究员获得合成生物学和体内的新技能来获得学术生涯
模型。该研究员将通过指导、网络、
参加会议,以及撰写资助金的经验。该研究员将在生物设计中心接受培训
波士顿大学在分子、细胞和组织工程方面拥有广泛的专业知识,并提出了
为研究员提供科学和专业发展的跨学科和协作环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mai Ngo其他文献
Mai Ngo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mai Ngo', 18)}}的其他基金
Developing a Temporally-Regulated Gene Therapy for Therapeutic Angiogenesis
开发用于治疗性血管生成的时间调控基因疗法
- 批准号:
10832458 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
相似国自然基金
基于rAAV的基因替代疗法治疗CARD9缺陷相关的侵袭性皮肤癣菌感染研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
经玻璃体腔基因替代疗法联合抗凋亡基因疗法治疗LCA2及抗凋亡分子机制探索
- 批准号:81970840
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
铁影响雌激素替代疗法在绝经早晚期对动脉粥样硬化疗效的差异
- 批准号:81870348
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
冠心病患者PCI术后西洛他唑替代疗法的可行性及药理机制研究
- 批准号:81803630
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
关于一新型高效跨越血脑屏障的非嵌合药物输送载体K16ApoE的机制研究
- 批准号:81703410
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanistic study and therapeutic application of AIBP in AMD
AIBP在AMD中的作用机制研究及治疗应用
- 批准号:
10733843 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Developing a Temporally-Regulated Gene Therapy for Therapeutic Angiogenesis
开发用于治疗性血管生成的时间调控基因疗法
- 批准号:
10832458 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Disease Modifying Treatment Using Combined Shockwave Therapy and Platelet Rich Plasma In Microvascular Erectile Dysfunction
使用组合冲击波疗法和富血小板血浆治疗微血管勃起功能障碍的疾病修饰治疗
- 批准号:
10705100 - 财政年份:2021
- 资助金额:
$ 6.72万 - 项目类别:
Disease Modifying Treatment Using Combined Shockwave Therapy and Platelet Rich Plasma In Microvascular Erectile Dysfunction
使用组合冲击波疗法和富血小板血浆治疗微血管勃起功能障碍的疾病修饰治疗
- 批准号:
10342876 - 财政年份:2021
- 资助金额:
$ 6.72万 - 项目类别:
Disease Modifying Treatment Using Combined Shockwave Therapy and Platelet Rich Plasma In Microvascular Erectile Dysfunction
使用组合冲击波疗法和富血小板血浆治疗微血管勃起功能障碍的疾病修饰治疗
- 批准号:
10490478 - 财政年份:2021
- 资助金额:
$ 6.72万 - 项目类别: