Understanding the effects of mitochondrial fission disruption during early cortical development
了解早期皮质发育过程中线粒体裂变破坏的影响
基本信息
- 批准号:10535949
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-05 至 2025-05-04
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAdoptedAffectApoptosisBindingBrainCalciumCell LineCell modelCellsChildComplexDefectDevelopmentDevelopmental Delay DisordersDynaminDynamin IEndoplasmic ReticulumEpilepsyEventExhibitsF-ActinFeedbackFibroblastsFunctional disorderGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHumanHydrolysisImmunoprecipitationImpairmentInvestigationKnowledgeLeadLightMembraneMetabolicMicrocephalyMicroscopyMitochondriaMitochondrial DiseasesModelingMolecularMorphologyMutationNatureNeuritesNeurodevelopmental DeficitNeurodevelopmental DisorderNeuronal DifferentiationNeuronsOptic AtrophyOrganellesOutcomePathogenicityPathologicPathologyPatientsPhenotypeProcessProteinsResolutionRoleSeizuresSiteSymptomsSynapsesTestingTherapeuticTotal Internal Reflection Fluorescentaxon growthbasecell motilitycell typeconstrictionde novo mutationearly childhoodepileptic encephalopathiesexome sequencingimprovedinduced pluripotent stem cellinsightloss of function mutationmitochondrial fitnessmitochondrial membranemutantnerve stem cellneurodevelopmentneurogenesisneuron developmentnovelreceptorstem cellssynaptogenesistherapeutic targettrafficking
项目摘要
Summary
With the advent of exome sequencing, a growing number of children are being identified with de novo loss of
function mutations in the large GTPase essential for mitochondrial fission - Dynamin Related Protein 1 (DRP1);
these mutations result in severe neurodevelopmental phenotypes such as developmental delay, optic atrophy,
and epileptic encephalopathies. Though it is established that mitochondrial fission is an essential precursor to
the rapidly changing metabolic needs of the developing cortex, it is not understood how identified mutations in
different domains of DRP1 uniquely disrupt this process. F-actin and the endoplasmic reticulum (ER) form a
complex to prime the mitochondria for fission by pre-constricting the mitochondrial membrane prior to formation
of DRP1 oligomers. The effect of DRP1 mutations on protein interactions with F-actin and the ER has never
been studied in cell types of the developing cortex. This proposal focuses on testing the mechanism of DRP1
dysfunction both on protein interactions at sites of fission as well as downstream effects on cortical neuron
differentiation and maturation. We aim to approach these gaps by leveraging the power of induced pluripotent
stem cells (iPSCs) harboring DRP1 mutations in either the GTPase or stalk domains to model cell-fate changes
associated with early cortical development. We will functionally assess the capacity for these iPSCs with mutant
DRP1 to adopt a neural progenitor fate and progress to active cortical neurons using quantitative analysis of
neurite outgrowth and branching, calcium transient recording, and synchronous synaptic firing. To understand
how mutant forms of DRP1 interact with F-actin and the ER during fission, we will use live super-resolution
Airyscan microscopy paired with in-cell immunoprecipitation to capture changes in the assembly and
disassembly of this fission machinery. Successful completion of these aims will improve our understanding of
the role of mitochondrial fission during cortical development and at which stages of this process perturbations
become highly pathogenic. Furthermore, these results could help shed light on variable patient symptoms and
outcomes based on specific DRP1 mutations, possibly leading to individualized therapeutics for mitochondrial
disease.
概括
随着外显节测序的出现,越来越多的儿童被从头丧失。
大型GTPase中的功能突变,对于线粒体裂变 - 动力学相关蛋白1(DRP1)所必需的功能突变;
这些突变导致严重的神经发育表型,例如发育延迟,视神经萎缩,
和癫痫性脑病。尽管确定线粒体裂变是
发育中的皮质的快速变化的代谢需求,尚不理解如何确定的突变
DRP1的不同域唯一破坏了此过程。 F-肌动蛋白和内质网(ER)形成A
复合物通过在形成之前预收缩线粒体膜来裂变线粒体裂变
DRP1低聚物。 DRP1突变对蛋白质与F-肌动蛋白相互作用和ER的影响从未
在发育中的皮质的细胞类型中进行了研究。该建议重点是测试DRP1的机制
裂变部位蛋白质相互作用的功能障碍以及对皮质神经元的影响
分化和成熟。我们的目标是利用诱导多能的力量来解决这些差距
干细胞(IPSC)在GTPase或Stalk结构域中含有DRP1突变,以建模细胞粘液变化
与早期皮质发育有关。我们将通过突变体功能评估这些IPSC的能力
DRP1采用神经祖细胞的命运并使用定量分析对活性皮质神经元进行进展
神经突生长和分支,钙瞬态记录以及同步突触射击。理解
DRP1突变形式如何与F-肌动蛋白和ER相互作用,我们将使用实时超分辨率
Airyscan显微镜与内部免疫沉淀配对以捕获组件的变化和
这种裂变机械的拆卸。这些目标的成功完成将提高我们对
线粒体裂变在皮质发育中的作用以及该过程扰动的阶段
变得高度致病。此外,这些结果可能有助于阐明可变的患者症状和
基于特定DRP1突变的结果,可能导致线粒体的个性化治疗剂
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tierney Baum其他文献
Tierney Baum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
- 批准号:
10430819 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
- 批准号:
10684722 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别: