What is going on in the fish's brain? Characterization and Modeling of Neural Dynamics (CNS and ANS and ICNS)

鱼的大脑里发生了什么?

基本信息

  • 批准号:
    10525434
  • 负责人:
  • 金额:
    $ 81.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-25 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Project 2 It is the behavioral algorithms that dictate the questions and framework for any model of neural implementation. Thus, to discover how behavioral algorithms are implemented and to generate a realistic brain-body circuit model for larval zebrafish, we need, in addition to knowledge about the anatomical structure of the circuits, detailed information about neural activity patterns during behavior. Further, behavioral algorithms must be implemented in the context of the embodied animal, which is subject to physiological demands, fluctuations and constraints. In order to accommodate both of these requirements, we will estimate and incorporate these physiological state variables into our modeling framework. In order to obtain the necessary datasets, we propose to add detailed measurements of heart and gills, as well as body wide recordings from the autonomic nervous system (ANS) and the intrinsic cardiac nervous system (ICNS) to our experimental repertoire. Such recordings will be combined with established brain wide imaging technologies, where we will focus on critical regions, such as the hypothalamus and various other areas that were already identified to play an important role in the modulation of behaviors and internal states. To facilitate the quantification and control of state-dependent variability, we have also designed a set of behavioral assays where environmental context is modulated to induce specific changes in the animal's internal and autonomic state. The comprehensive data sets collected in these experiments then allow for the generation of a family of realistic circuit models that could, in principle, implement the behavioral algorithms and that can reproduce and emulate the recorded neural and cardiac activity patterns. These realistic models allow for the generation of specific predictions and hypotheses about many of the unconstrained parameters in the underlying circuits. Such parameters include specific connectivity patterns, the synaptic weights, the excitability of membranes and many more. In order to constrain this large variety of variables one needs to apply a variety of independent approaches. To that end we will take advantage of the extensive experimental toolset already developed in the context of the current U19 grant, which includes the use of optogenetics based circuit interrogation, targeted electrophysiology and sparse connectomics tracing in overlaid EM volumes. Many of these experimental approaches require tethered behavioral preparations which are already established in our laboratories. Such preparations provide the ideal setting for brain wide imaging and targeted perturbation, and they will therefore facilitate the generation of a further refined set of validated circuit models for our various behavioral assays. To summarize, our goal is to first validate and constrain a set of realistic circuit models that we have already generated in the context of the current U19, to integrate these validated models with a novel framework we will generate for the animal's autonomic state, and ultimately to combine all of them into a composite realistic multiscale circuit model of the zebrafish brain and body. This multiscale circuit model will describe how all sensory stimuli, from the outside world as well as from inside the body, are encoded and transformed into distributed neural activity that generates the motor sequences that constitute the final output of the system.
项目2 是行为算法决定了任何神经实施模型的问题和框架。因此, 发现如何实现行为算法并为幼虫生成逼真的脑体电路模型 斑马鱼,除了了解电路的解剖结构外,我们还需要 行为过程中的神经活动模式。此外,必须在 体现的动物,受生理需求,波动和约束的影响。为了容纳两者 在这些要求中,我们将估算并将这些生理状态变量纳入我们的建模框架。 为了获得必要的数据集,我们建议添加心脏和g的详细测量 自主神经系统(ANS)和内在心脏神经系统(ICN)的记录 实验曲目。这样的录音将与已建立的大脑宽成像技术相结合,我们 将重点关注关键区域,例如下丘脑和其他已经确定的其他领域 在行为和内部状态的调节中的重要作用。促进量化和控制 与国家有关的可变性,我们还设计了一组行为分析,将环境环境调节为 引起动物内部和自主状态的特定变化。 这些实验中收集的全面数据集,然后允许产生一个现实的电路家族 原则上可以实现行为算法并可以复制和模拟记录的模型 神经和心脏活动模式。这些现实的模型允许产生特定的预测和假设 关于基础电路中的许多无约束参数。这样的参数包括特定的连接 模式,突触重量,膜的兴奋性等等。为了限制这大量的 变量需要采用各种独立方法。为此,我们将利用广泛的优势 实验工具集已经在当前U19赠款的背景下开发,其中包括使用光遗传学 基于电路的电路询问,靶向电生理学和稀疏连接组学在叠加的EM体积中追踪。许多 这些实验方法需要在我们的实验室中已经建立的束缚行为准备。 这样的准备工作为大脑宽成像和有针对性的扰动提供了理想的设置,因此它们将 促进为我们的各种行为分析的进一步精制的经过验证的电路模型的生成。 总而言之,我们的目标是首先验证和约束一组我们已经生成的现实电路模型 当前U19的上下文,将这些经过验证的模型与新的框架整合在一起,我们将为该框架生成 动物的自主状态,并最终将所有这些结合在一起 斑马鱼的大脑和身体。这个多尺度电路模型将如何描述所有感官刺激如何从外界看成 以及从体内的内部编码并转化为产生电动机的分布式神经活动 构成系统最终输出的序列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Florian Engert其他文献

Florian Engert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Florian Engert', 18)}}的其他基金

Genetic and neural mechanisms underlying emerging social behavior in zebrafish
斑马鱼新兴社会行为的遗传和神经机制
  • 批准号:
    10306905
  • 财政年份:
    2021
  • 资助金额:
    $ 81.62万
  • 项目类别:
Sensorimotor processing, decision making, and internal states: towards a realistic multiscale circuit model of the larval zebrafish brain
感觉运动处理、决策和内部状态:建立幼虫斑马鱼大脑的真实多尺度电路模型
  • 批准号:
    9444232
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
Sensorimotor processing, decision making, and internal states: towards a realistic multiscale circuit model of the larval zebrafish brain
感觉运动处理、决策和内部状态:建立幼虫斑马鱼大脑的真实多尺度电路模型
  • 批准号:
    10241477
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
The Heart and the Mind: An Integrative Approach to Brain-Body Interactions in the Zebrafish
心脏和思想:斑马鱼脑体相互作用的综合方法
  • 批准号:
    10525427
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
The Heart and the Mind: An Integrative Approach to Brain-Body Interactions in the Zebrafish
心脏和思想:斑马鱼脑体相互作用的综合方法
  • 批准号:
    10686975
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
Admin Core
管理核心
  • 批准号:
    10686976
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
Sensorimotor processing, decision making, and internal states: towards a realistic multiscale circuit model of the larval zebrafish brain
感觉运动处理、决策和内部状态:建立幼虫斑马鱼大脑的真实多尺度电路模型
  • 批准号:
    9570757
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
Admin Core
管理核心
  • 批准号:
    10525428
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
What is going on in the fish's brain? Characterization and Modeling of Neural Dynamics (CNS and ANS and ICNS)
鱼的大脑里发生了什么?
  • 批准号:
    10686992
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:
The Heart and the Mind: An Integrative Approach to Brain-Body Interactions in the Zebrafish
心脏和思想:斑马鱼脑体相互作用的综合方法
  • 批准号:
    10786427
  • 财政年份:
    2017
  • 资助金额:
    $ 81.62万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 81.62万
  • 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
  • 批准号:
    10735946
  • 财政年份:
    2023
  • 资助金额:
    $ 81.62万
  • 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
  • 批准号:
    10645844
  • 财政年份:
    2023
  • 资助金额:
    $ 81.62万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 81.62万
  • 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 81.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了