Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
基本信息
- 批准号:10524210
- 负责人:
- 金额:$ 7.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-08 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBar CodesBehaviorBig DataBiological Specimen BanksBreast Cancer CellCancer BiologyCell CountCell LineCell SurvivalCellsChemoresistanceClinicalCommunitiesDataDevelopmental Therapeutics ProgramDiagnosisDimensionsDisease ProgressionDoxorubicinDrug resistanceExperimental ModelsFluorouracilFutureGene ExpressionGenomicsGoalsGrowthHeterogeneityHumanIndividualLinkMalignant NeoplasmsMapsMeasurementMeasuresMethodsModelingMolecularPaclitaxelPatientsPhenotypePlayPopulationPrediction of Response to TherapyRegimenResistanceRoleSamplingSystemSystems BiologyTechnologyTestingTexasTherapeuticTherapeutic AgentsTimeTreatment FailureTreatment ProtocolsUniversitiesVariantaustincancer therapycell dimensioncell growthchemotherapeutic agentchemotherapyclinically relevantcohesioncostepigenetic variationexperimental studyhigh dimensionalityindividualized medicinemathematical modelmedical schoolsmodel developmentmultidimensional dataneoplastic cellnew technologynovelpredictive modelingresponsesingle-cell RNA sequencingstandard of caretherapy resistanttranscriptometranscriptomicstranslational potentialtreatment responsetriple-negative invasive breast carcinomatumortumor heterogeneity
项目摘要
PROJECT SUMMARY
In recent years, improvements in diagnosis and treatment have extended the lives of many patients with triple
negative breast cancer, but resistance to treatment remains a major clinical and scientific challenge. While
standard-of-care treatment and chemotherapy is effective in many TNBC patients, approximately 40% of
patients display resistance, leading to poor overall survival. TNBC are characterized by significant intratumor
heterogeneity, which further complicates treatment. Mechanisms of chemoresistance in TNBC patients
remain poorly understood, in part due to a lack of available methods and models to measure intratumor
heterogeneity and track changes in heterogeneous tumor compositions over time. Here we propose to use a
new technology to track individual cells and clones as they respond to different chemotherapeutic agents; this
more detailed information about the tumor cell population will be used to build mathematical models better
predict and optimize therapeutic response. We first measure individual cell gene expression changes in
response to treatment and then assemble these measurements into cell subpopulation trajectories, taking
advantage of a barcoding technology developed in our lab to quantify clonally-resolved single cell
transcriptomes. These Aim 1 studies will build a compendium of gene expression, cell growth and survival
data that describes how each of the heterogeneous cells in major experimental models of subtypes of triple
negative breast cancer responds to clinically-relevant therapeutic agents. The new ability to layer clonal
identifier information on single cell gene expression data reveals the detailed trajectories of individual cells
that escape therapy. It also distinguishes subpopulations with pre-existing treatment resistance from those
in which a resistant state is induced. At a higher conceptual level, this proposal seeks to also address a broad
practical challenge: the high-dimensional ‘omics’ data collected in many large-scale efforts points often points
to correlations in disease progression but not been informative for building mechanistic models to aid in the
predictive of tumor response. Often, other types of data are more readily available-- lower dimensional data
with more frequent measurements. We therefore next ask: How can these distinct data types be integrated
into a useful framework to build predictive models of tumor cell response to therapy? This seems a fitting goal
for the systems biology of cancer community. We propose to tackle this challenge with our barcode tracking
technology; relative fractions of sensitive and resistance phenotypes, along with separate longitudinal
measurements of cell number (low dimension data), become the inputs for a mechanistic model to predict
therapeutic response and resistance (Aim 2). In Aim 3, we will perform trajectory-mapping and model testing
using patient-derived triple negative breast cancer cells, towards understanding the potential for translational
utility. By integrating different data types into a cohesive framework, we aim to describe how sensitive and
resistant subpopulations in TNBC grow, die, and transition in response to treatment.
项目摘要
近年来,诊断和治疗的改善延长了许多三重患者的寿命
乳腺癌阴性,但对治疗的抵抗力仍然是主要的临床和科学挑战。尽管
护理标准治疗和化学疗法在许多TNBC患者中都是有效的,约占40%
患者表现出抵抗力,导致总体生存率差。 TNBC的特征是显着的肿瘤
异质性,这进一步使治疗复杂化。 TNBC患者化学抗性的机制
保持不当理解,部分原因是缺乏可用的方法和模型来测量肿瘤内
随着时间的推移,异质性和轨道变化的异质性肿瘤组成。在这里,我们建议使用
在对不同的化学治疗剂响应时跟踪单个细胞和克隆的新技术;这
有关肿瘤细胞种群的更多详细信息将用于更好地构建数学模型
预测并优化治疗反应。我们首先测量单个细胞基因表达的变化
对治疗的反应,然后将这些测量汇总到细胞亚群轨迹中,采用
我们实验室开发的条形码技术的优势,用于量化克隆可分离的单细胞
转录组。这些目标1研究将建立基因表达,细胞生长和生存的纲要
描述了三重亚型的主要实验模型中的每个异质细胞的数据
负乳腺癌对临床上与临床相关的治疗剂的反应。层层克隆的新能力
有关单细胞基因表达数据的标识符信息揭示了单个细胞的详细轨迹
逃生疗法。它还区分了先前存在的治疗耐药性的亚群和
诱导抗性状态。在较高的概念层面上,该提议也试图解决广泛的
实用挑战:在许多大规模努力点中收集的高维度“ OMIC”数据通常
疾病进展的相关性,但对建立机械模型的帮助没有信息
预测肿瘤反应。通常,其他类型的数据更容易获得 - 较低的尺寸数据
进行更频繁的测量。因此,我们接下来问:如何集成这些不同的数据类型
成为一个有用的框架,以建立肿瘤细胞对治疗反应的预测模型?这似乎是一个合适的目标
用于癌症社区的系统生物学。我们建议通过条形码跟踪来应对这一挑战
技术;敏感和抗性表型的相对部分以及独立的纵向
细胞数的测量(低维数据),成为机械模型的输入以预测
治疗反应和抗性(AIM 2)。在AIM 3中,我们将执行轨迹映射和模型测试
使用患者来源的三重阴性乳腺癌细胞,以了解转化的潜力
公用事业。通过将不同的数据类型集成到一个内聚框架中,我们旨在描述敏感和
TNBC中的抗性亚群会因治疗而生长,死亡和过渡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Brock其他文献
Amy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Brock', 18)}}的其他基金
Instability of Cancer Cell States in Tumor progression (ICCS)
肿瘤进展过程中癌细胞状态的不稳定性 (ICCS)
- 批准号:
10491691 - 财政年份:2021
- 资助金额:
$ 7.94万 - 项目类别:
A streamlined, high-throughput platform for validation of cancer antigen presentation and isolation of cancer antigen reactive T cells
一个简化的高通量平台,用于验证癌症抗原呈递和分离癌症抗原反应性 T 细胞
- 批准号:
10493222 - 财政年份:2021
- 资助金额:
$ 7.94万 - 项目类别:
A streamlined, high-throughput platform for validation of cancer antigen presentation and isolation of cancer antigen reactive T cells
一个简化的高通量平台,用于验证癌症抗原呈递和分离癌症抗原反应性 T 细胞
- 批准号:
10272349 - 财政年份:2021
- 资助金额:
$ 7.94万 - 项目类别:
Instability of Cancer Cell States in Tumor progression (ICCS)
肿瘤进展过程中癌细胞状态的不稳定性 (ICCS)
- 批准号:
10212099 - 财政年份:2021
- 资助金额:
$ 7.94万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10057183 - 财政年份:2020
- 资助金额:
$ 7.94万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10256717 - 财政年份:2020
- 资助金额:
$ 7.94万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10468211 - 财政年份:2020
- 资助金额:
$ 7.94万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10307901 - 财政年份:2020
- 资助金额:
$ 7.94万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10388446 - 财政年份:2020
- 资助金额:
$ 7.94万 - 项目类别:
Systems Approaches to Understanding Subpopulation Heterogeneity in Therapeutic Resistance
理解治疗耐药性亚群异质性的系统方法
- 批准号:
10759093 - 财政年份:2020
- 资助金额:
$ 7.94万 - 项目类别:
相似国自然基金
基于条形码谱系追踪和CRISPR高通量筛选发现CXCL12增强结直肠癌细胞免疫治疗的分子机制研究
- 批准号:82303735
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于DNA荧光条形码的RNA m6A位点空间分辨多重成像分析研究
- 批准号:32301256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于代谢组差异分析与DNA宏条形码技术“中药材-提取物-制剂”普适的人参属中药鉴别研究
- 批准号:82374030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DNA计时器条形码的构建及其在多重检测与多重原位成像中的应用
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于DNA纳米条形码探针的核酸多重检测
- 批准号:32201175
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional Analysis of Distinct and Co-existing Transcriptional Programs Regulating Tumor Dormancy
调节肿瘤休眠的不同和共存转录程序的功能分析
- 批准号:
10584353 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
- 批准号:
10680017 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
The Structure and Function of Ipsilateral Corticospinal Projections
同侧皮质脊髓投射的结构和功能
- 批准号:
10678301 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
- 批准号:
10657971 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别:
Spatially Resolved CRISPR Genomics for Dissecting Testicular Gene Functions at Scale
空间分辨 CRISPR 基因组学用于大规模剖析睾丸基因功能
- 批准号:
10573701 - 财政年份:2023
- 资助金额:
$ 7.94万 - 项目类别: