Inhibitors of SARS-CoV-2 Polymerase
SARS-CoV-2 聚合酶抑制剂
基本信息
- 批准号:10514325
- 负责人:
- 金额:$ 435.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAdenosineAirAnimal ModelAnimalsAntiviral AgentsArbovirusesArea Under CurveBiochemicalBiologicalBiological AssayBiological AvailabilityCOVID-19 assayCOVID-19 treatmentCell Differentiation processCellsChemicalsClinical DataCollaborationsComplementComplexCoronavirusCoronavirus InfectionsCysteineDataDevelopmentDisease ProgressionDoseDrug KineticsEnvironmentEnzymesEscape MutantFDA Emergency Use AuthorizationFDA approvedFamilyFormulationFrequenciesGS-441524HumanIntravenousLeadLibrariesLiquid substanceLysineMacaca mulattaMedicineMethodsMiddle East Respiratory Syndrome CoronavirusModificationMolecularNonstructural ProteinNucleosidesOralOral AdministrationOrganoidsOrthobunyavirusOutpatientsParentsPharmaceutical ChemistryPharmacologyPhasePolymeraseProdrugsProteinsProteomicsRNA Polymerase InhibitorRNA chemical synthesisRNA-Directed RNA PolymeraseReactionRegimenResistanceRodentSARS coronavirusSARS-CoV-2 inhibitorSecondary toSeriesStructural ModelsStructureSuspensionsTechnologyTestingToxicologyViral Hemorrhagic FeversViral ProteinsVirusVirus Replicationanaloganimal efficacyaqueousbasebiological systemsbronchial epitheliumdeep sequencingdrug discoveryefficacy studyhemorrhagic fever virusimprovedindexinginhibitorinsightmolnupiravirnonhuman primatenovelnovel therapeuticsnucleoside analognucleoside inhibitorpandemic preparednesspre-clinicalremdesivirscreeningseasonal coronavirussmall moleculesmall molecule inhibitortripolyphosphateviral RNA
项目摘要
SUMMARY
The SARS-CoV-2 RNA-dependent RNA polymerase (RDRP), non-structural protein 12 (NSP12), which in
complex with viral proteins nsp7 and nsp8 carries out essential RNA synthesis reactions, is an attractive and
well-validated target for antivirals. To date, nucleoside analogs that inhibit RDRP activity show promise as
COVID-19 treatments. Among these is remdesivir (RDV), a prodrug of the adenosine analog GS-441524 and the
first FDA-approved antiviral for the treatment of COVID-19. Recent phase 3 clinical data for molnupiravir, a
prodrug of β-D-N4-hydroxycytidine (NHC), has encouraged Merck to seek Emergency Authorization Use.
Whereas RDV suffers from lack of oral bioavailability, limiting its outpatient use, molnupiravir is orally
administered but requires frequent high doses. Further, none of the most advanced nucleoside inhibitors were
developed specifically to treat coronavirus infections. Here, we propose three parallel approaches to provide
novel drugs optimized to target the SARS-CoV-2 RDRP and treat coronavirus infections. In the first approach,
we build on promising preliminary data in non-human primates as we aim to develop a prodrug with improved
oral exposure vs. RDV so as to enable oral administration for use in the outpatient setting, preferably a once a
day dosing regimen. Our second approach seeks to identify and optimize novel nucleoside analogs against
SARS-CoV-2 RDRP. Key to this approach will be the screening of a nucleoside library that includes 167 novel
analogs for activity against SARS-CoV-2 in human bronchial epithelial cells differentiated in an air-liquid
interface. Third, we will use a cell-based assay of SARS-CoV-2 RDRP to screen a novel library of structurally
diverse “fully functionalized fragments” and a second library of cysteine- and lysine-reactive compounds to
identify allosteric inhibitors. Promising RDRP inhibitors will be tested for pan-coronavirus potential by testing
against SARS-CoV, MERS-CoV and seasonal coronaviruses. Because RDRPs share conserved structures,
broad-spectrum activity is possible and would be desirable. Therefore, we will evaluate top RDRP inhibitors from
this Project and from Projects 5 and 6, which will focus on arboviruses and hemorrhagic fever viruses, in
established biochemical RDRP assays for a panel of emerging viruses. These assays will provide mechanistic
insight into the basis for broad-spectrum activity. In parallel, deep-sequencing approaches will be used to define
MOA in infected cells and animals. For these studies, compound progression will be driven by iterative
optimization by the Medicinal Chemistry Core (Core B), biological profiling against coronavirus replication assays
in the HTS Core (Core A), ADME, PK and toxicology profiling from the Pharmacology Core (Core C), animal
efficacy studies in collaboration with the Organoid and Animal Model Core (Core D), and structure-based drug
discovery with the Structural and Modeling Core (Core E) to deliver a pan-active coronavirus preclinical
candidate with a profile superior to RDV and molnupiravir.
概括
SARS-COV-2 RNA依赖性RNA聚合酶(RDRP),非结构蛋白12(NSP12)
病毒蛋白NSP7和NSP8的复合物进行必不可少的RNA合成反应,是一个吸引人的,并且
抗病毒药物的验证靶标。迄今为止,抑制RDRP活性的核苷类似物显示出有望
COVID-19治疗。其中包括Remdesivir(RDV),腺苷模拟GS-441524的前药和
首次通过FDA批准的抗病毒治疗COVID-19。最近3阶段的莫纳皮拉维尔(Molnupiravir)临床数据
β-D-N4-羟基辛丁定(NHC)的前药鼓励默克寻求紧急授权使用。
RDV缺乏口服生物利用度,限制其门诊的使用,而Molnupiravir则是口服的
管理但需要高剂量。此外,最先进的核苷抑制剂没有
专门用于治疗冠状病毒感染。在这里,我们提出了三种平行的方法来提供
优化的新药物以靶向SARS-COV-2 RDRP并治疗冠状病毒感染。在第一种方法中,
我们以非人类隐私的有希望的初步数据为基础
口服暴露与RDV,以便在门诊环境中使用口服给药
日给药方案。我们的第二种方法旨在识别和优化针对的新型核苷类似物
SARS-COV-2 RDRP。这种方法的关键将是筛选包括167个小说的核能库
在空气中分化的人支气管上皮细胞中对SARS-COV-2活性的类似物
界面。第三,我们将使用基于细胞的SARS-COV-2 RDRP评估来筛选一个新颖的结构库
多样的“功能化碎片”和第二个半胱氨酸和赖氨酸反应化合物的文库
鉴定变构抑制剂。有希望的RDRP抑制剂将通过测试测试泛氧化病毒电位
对抗SARS-COV,MERS-COV和季节性冠状病毒。因为RDRP共享组成的结构,所以
广谱活动是可能的,并且是可取的。因此,我们将评估最高的RDRP抑制剂
该项目以及第5和6项目将重点介绍arbovirus和出血性发烧病毒
建立的生化RDRP分析,用于一系列新兴病毒。这些测定将提供机械
深入了解广谱活动的基础。并行,深层的方法将用于定义
MOA在感染的细胞和动物中。对于这些研究,复合进展将由迭代驱动
药物化学核心(核心B)的优化,针对冠状病毒复制测定法的生物学分析
在HTS核心(核心A),ADME,PK和毒理学分析中,来自药理学核心(Core C),动物
功效研究与类器官和动物模型核心(核心D)以及基于结构的药物合作研究
使用结构和建模核心(核心E)发现泛活动冠状病毒临床前
候选人具有优于RDV和Molnupiravir的候选者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher F Basler其他文献
Christopher F Basler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher F Basler', 18)}}的其他基金
Understanding how the MERS Coronavirus protein ORF4b interactions with importin alpha modulate innate immunity
了解 MERS 冠状病毒蛋白 ORF4b 与 importin alpha 的相互作用如何调节先天免疫
- 批准号:
10289173 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
VPS34 inhibitors as SARS-CoV-2 antivirals
VPS34 抑制剂作为 SARS-CoV-2 抗病毒药物
- 批准号:
10534720 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Understanding how the MERS Coronavirus protein ORF4b interactions with importin alpha modulate innate immunity
了解 MERS 冠状病毒蛋白 ORF4b 与 importin alpha 的相互作用如何调节先天免疫
- 批准号:
10438878 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Small Molecule Inhibitors of Ebola Virus Polymerase Function
埃博拉病毒聚合酶功能的小分子抑制剂
- 批准号:
10534719 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Understanding how the MERS Coronavirus protein ORF4b interactions with importin alpha modulate innate immunity
了解 MERS 冠状病毒蛋白 ORF4b 与 importin alpha 的相互作用如何调节先天免疫
- 批准号:
10536332 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
VPS34 inhibitors as SARS-CoV-2 antivirals
VPS34 抑制剂作为 SARS-CoV-2 抗病毒药物
- 批准号:
10238577 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10593400 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10425317 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10214516 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10665712 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
相似国自然基金
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
S-腺苷同型半胱氨酸抑制METTL3调控m6A/miRNA-NCOA4轴致椎间盘退变的机制研究
- 批准号:82372444
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于肝脏腺苷A1受体调控的PKA-SCAP-SREBP1c通路研究知母皂苷AⅢ治疗NAFLD的分子机理
- 批准号:82374129
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PUF60通过调控SET可变多聚腺苷酸化参与DNA损伤修复促进卵巢癌耐药的机制
- 批准号:82303055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 435.32万 - 项目类别:
The molecular and cellular mechanisms of the STAT3 mutation-mediated pulmonary disorder in Autosomal Dominant Hyper IgE Syndrome (AD-HIES)
常染色体显性高 IgE 综合征 (AD-HIES) STAT3 突变介导的肺部疾病的分子和细胞机制
- 批准号:
10393987 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别:
Altered mitochondrial function and HIV-associatedcardiometabolic disease in populations from South Africa and Kenya (MITO-SAKen)
南非和肯尼亚人群线粒体功能改变和 HIV 相关心脏代谢疾病 (MITO-SAKen)
- 批准号:
10534828 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别:
The molecular and cellular mechanisms of the STAT3 mutation-mediated pulmonary disorder in Autosomal Dominant Hyper IgE Syndrome (AD-HIES)
常染色体显性高 IgE 综合征 (AD-HIES) STAT3 突变介导的肺部疾病的分子和细胞机制
- 批准号:
10584596 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别:
Identifying Brain Epitranscriptomic Changes Associated with Alcohol Use Disorder
识别与酒精使用障碍相关的大脑表观转录组变化
- 批准号:
10343021 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别: