Inhibitors of SARS-CoV-2 Polymerase
SARS-CoV-2 聚合酶抑制剂
基本信息
- 批准号:10514325
- 负责人:
- 金额:$ 435.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAdenosineAirAnimal ModelAnimalsAntiviral AgentsArbovirusesArea Under CurveBiochemicalBiologicalBiological AssayBiological AvailabilityCOVID-19 assayCOVID-19 treatmentCell Differentiation processCellsChemicalsClinical DataCollaborationsComplementComplexCoronavirusCoronavirus InfectionsCysteineDataDevelopmentDisease ProgressionDoseDrug KineticsEnvironmentEnzymesEscape MutantFDA Emergency Use AuthorizationFDA approvedFamilyFormulationFrequenciesGS-441524HumanIntravenousLeadLibrariesLiquid substanceLysineMacaca mulattaMedicineMethodsMiddle East Respiratory Syndrome CoronavirusModificationMolecularNonstructural ProteinNucleosidesOralOral AdministrationOrganoidsOrthobunyavirusOutpatientsParentsPharmaceutical ChemistryPharmacologyPhasePolymeraseProdrugsProteinsProteomicsRNA Polymerase InhibitorRNA chemical synthesisRNA-Directed RNA PolymeraseReactionRegimenResistanceRodentSARS coronavirusSARS-CoV-2 inhibitorSecondary toSeriesStructural ModelsStructureSuspensionsTechnologyTestingToxicologyViral Hemorrhagic FeversViral ProteinsVirusVirus Replicationanaloganimal efficacyaqueousbasebiological systemsbronchial epitheliumdeep sequencingdrug discoveryefficacy studyhemorrhagic fever virusimprovedindexinginhibitorinsightmolnupiravirnonhuman primatenovelnovel therapeuticsnucleoside analognucleoside inhibitorpandemic preparednesspre-clinicalremdesivirscreeningseasonal coronavirussmall moleculesmall molecule inhibitortripolyphosphateviral RNA
项目摘要
SUMMARY
The SARS-CoV-2 RNA-dependent RNA polymerase (RDRP), non-structural protein 12 (NSP12), which in
complex with viral proteins nsp7 and nsp8 carries out essential RNA synthesis reactions, is an attractive and
well-validated target for antivirals. To date, nucleoside analogs that inhibit RDRP activity show promise as
COVID-19 treatments. Among these is remdesivir (RDV), a prodrug of the adenosine analog GS-441524 and the
first FDA-approved antiviral for the treatment of COVID-19. Recent phase 3 clinical data for molnupiravir, a
prodrug of β-D-N4-hydroxycytidine (NHC), has encouraged Merck to seek Emergency Authorization Use.
Whereas RDV suffers from lack of oral bioavailability, limiting its outpatient use, molnupiravir is orally
administered but requires frequent high doses. Further, none of the most advanced nucleoside inhibitors were
developed specifically to treat coronavirus infections. Here, we propose three parallel approaches to provide
novel drugs optimized to target the SARS-CoV-2 RDRP and treat coronavirus infections. In the first approach,
we build on promising preliminary data in non-human primates as we aim to develop a prodrug with improved
oral exposure vs. RDV so as to enable oral administration for use in the outpatient setting, preferably a once a
day dosing regimen. Our second approach seeks to identify and optimize novel nucleoside analogs against
SARS-CoV-2 RDRP. Key to this approach will be the screening of a nucleoside library that includes 167 novel
analogs for activity against SARS-CoV-2 in human bronchial epithelial cells differentiated in an air-liquid
interface. Third, we will use a cell-based assay of SARS-CoV-2 RDRP to screen a novel library of structurally
diverse “fully functionalized fragments” and a second library of cysteine- and lysine-reactive compounds to
identify allosteric inhibitors. Promising RDRP inhibitors will be tested for pan-coronavirus potential by testing
against SARS-CoV, MERS-CoV and seasonal coronaviruses. Because RDRPs share conserved structures,
broad-spectrum activity is possible and would be desirable. Therefore, we will evaluate top RDRP inhibitors from
this Project and from Projects 5 and 6, which will focus on arboviruses and hemorrhagic fever viruses, in
established biochemical RDRP assays for a panel of emerging viruses. These assays will provide mechanistic
insight into the basis for broad-spectrum activity. In parallel, deep-sequencing approaches will be used to define
MOA in infected cells and animals. For these studies, compound progression will be driven by iterative
optimization by the Medicinal Chemistry Core (Core B), biological profiling against coronavirus replication assays
in the HTS Core (Core A), ADME, PK and toxicology profiling from the Pharmacology Core (Core C), animal
efficacy studies in collaboration with the Organoid and Animal Model Core (Core D), and structure-based drug
discovery with the Structural and Modeling Core (Core E) to deliver a pan-active coronavirus preclinical
candidate with a profile superior to RDV and molnupiravir.
概括
SARS-CoV-2 RNA 依赖性 RNA 聚合酶 (RDRP)、非结构蛋白 12 (NSP12),
与病毒蛋白 nsp7 和 nsp8 的复合物进行必要的 RNA 合成反应,是一种有吸引力的且
迄今为止,抑制 RDRP 活性的核苷类似物显示出良好的抗病毒靶点。
其中包括瑞德西韦 (RDV),它是腺苷类似物 GS-441524 的前药。
首个 FDA 批准的用于治疗 COVID-19 的抗病毒药物 molnupiravir 的最新 3 期临床数据。
β-D-N4-羟基胞苷(NHC)的前药,鼓励默克寻求紧急授权使用。
在全球范围内,RDV 缺乏口服生物利用度,限制了其门诊使用,molnupiravir 是口服药物
但需要频繁的高剂量。此外,没有一种最先进的核苷抑制剂被使用。
在这里,我们提出了三种并行的方法来提供专门治疗冠状病毒感染的方法。
针对 SARS-CoV-2 RDRP 进行优化并治疗冠状病毒感染的新颖方法在第一种方法中,
我们建立在非人类灵长类动物中有希望的初步数据的基础上,因为我们的目标是开发一种具有改进的前药
口服暴露与 RDV 的比较,以便能够在门诊环境中口服给药,最好是一次一次
我们的第二种方法旨在识别和优化新型核苷类似物。
SARS-CoV-2 RDRP。该方法的关键是筛选包含 167 个新的核苷库。
在空气-液体中分化的人支气管上皮细胞中具有抗 SARS-CoV-2 活性的类似物
第三,我们将使用基于细胞的 SARS-CoV-2 RDRP 检测来筛选新的结构文库。
多样化的“全功能化片段”和第二个半胱氨酸和赖氨酸反应性化合物库
通过测试来确定有前景的 RDRP 抑制剂的泛冠状病毒潜力。
由于 RDRP 具有保守的结构,因此能够抵抗 SARS-CoV、MERS-CoV 和季节性冠状病毒。
广谱活性是可能的并且是可取的,因此,我们将评估顶级 RDRP 抑制剂。
该项目以及项目 5 和 6 将重点关注虫媒病毒和出血热病毒,
针对一组新出现的病毒建立了生化 RDRP 检测,这些检测将提供机制。
同时,深度测序方法将用于定义广谱活动的基础。
对于这些研究,受感染细胞和动物中的 MOA 将通过迭代驱动。
通过药物化学核心(核心 B)进行优化,针对冠状病毒复制分析进行生物分析
在 HTS 核心(核心 A)、药理学核心(核心 C)的 ADME、PK 和毒理学分析中,动物
与类器官和动物模型核心(核心 D)以及基于结构的药物合作进行功效研究
与结构和建模核心(核心 E)进行发现,以提供泛活性冠状病毒临床前研究
候选药物的性能优于 RDV 和 molnupiravir。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher F Basler其他文献
Christopher F Basler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher F Basler', 18)}}的其他基金
Understanding how the MERS Coronavirus protein ORF4b interactions with importin alpha modulate innate immunity
了解 MERS 冠状病毒蛋白 ORF4b 与 importin alpha 的相互作用如何调节先天免疫
- 批准号:
10289173 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
VPS34 inhibitors as SARS-CoV-2 antivirals
VPS34 抑制剂作为 SARS-CoV-2 抗病毒药物
- 批准号:
10534720 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Understanding how the MERS Coronavirus protein ORF4b interactions with importin alpha modulate innate immunity
了解 MERS 冠状病毒蛋白 ORF4b 与 importin alpha 的相互作用如何调节先天免疫
- 批准号:
10438878 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Small Molecule Inhibitors of Ebola Virus Polymerase Function
埃博拉病毒聚合酶功能的小分子抑制剂
- 批准号:
10534719 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Understanding how the MERS Coronavirus protein ORF4b interactions with importin alpha modulate innate immunity
了解 MERS 冠状病毒蛋白 ORF4b 与 importin alpha 的相互作用如何调节先天免疫
- 批准号:
10536332 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
VPS34 inhibitors as SARS-CoV-2 antivirals
VPS34 抑制剂作为 SARS-CoV-2 抗病毒药物
- 批准号:
10238577 - 财政年份:2021
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10593400 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10425317 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10214516 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
Intersection Between Viral Translation and Innate Immunity in the Context of Filovirus Infection
丝状病毒感染背景下病毒翻译与先天免疫之间的交叉
- 批准号:
10665712 - 财政年份:2020
- 资助金额:
$ 435.32万 - 项目类别:
相似国自然基金
N6-甲基腺苷(m6A)修饰的LINC00673通过调节SRSF3稳定性促进乳腺癌转移和化疗耐药的机制研究
- 批准号:82303500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全新单磷酸腺苷化修饰催化结构域S-HxxxE的发现及在病原菌感染中的作用
- 批准号:32370185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
去腺苷酸化酶CNOT6L抑制结肠炎癌转化中CD8+T细胞功能的分子机制及其靶标属性探讨
- 批准号:82304557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N6-甲基腺苷修饰的circ_0048766参与三阴性乳腺癌生长转移和免疫逃逸的功能及其机制研究
- 批准号:82360468
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中性粒细胞凋亡囊泡通过ENPP1-NT5E-腺苷通路调节炎症反应促进口腔黏膜再生的机制研究
- 批准号:82301099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 435.32万 - 项目类别:
The molecular and cellular mechanisms of the STAT3 mutation-mediated pulmonary disorder in Autosomal Dominant Hyper IgE Syndrome (AD-HIES)
常染色体显性高 IgE 综合征 (AD-HIES) STAT3 突变介导的肺部疾病的分子和细胞机制
- 批准号:
10393987 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别:
Altered mitochondrial function and HIV-associatedcardiometabolic disease in populations from South Africa and Kenya (MITO-SAKen)
南非和肯尼亚人群线粒体功能改变和 HIV 相关心脏代谢疾病 (MITO-SAKen)
- 批准号:
10534828 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别:
The molecular and cellular mechanisms of the STAT3 mutation-mediated pulmonary disorder in Autosomal Dominant Hyper IgE Syndrome (AD-HIES)
常染色体显性高 IgE 综合征 (AD-HIES) STAT3 突变介导的肺部疾病的分子和细胞机制
- 批准号:
10584596 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别:
Identifying Brain Epitranscriptomic Changes Associated with Alcohol Use Disorder
识别与酒精使用障碍相关的大脑表观转录组变化
- 批准号:
10343021 - 财政年份:2022
- 资助金额:
$ 435.32万 - 项目类别: