Mechanisms of Target of Rapamycin Complex 1 Dependent Epigenetic Regulation
雷帕霉素复合物1依赖的表观遗传调控靶点机制
基本信息
- 批准号:10515603
- 负责人:
- 金额:$ 30.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAddressAffectArchitectureBindingBiochemicalCell DeathCell NucleusCell ProliferationCell SurvivalCellsChIP-seqChromatinChromatin StructureComplexCoupledCritical PathwaysCytoplasmDeacetylaseDiseaseEngineeringEnvironmentEpigenetic ProcessFRAP1 geneFutureGene ExpressionGenesGeneticGenetic ScreeningGenetic TranscriptionGenomic approachGoalsHMGB ProteinsHMGB1 geneHealthHistone AcetylationHistone DeacetylaseHistone H3Histone H4HistonesHomeostasisHomologous GeneHumanImmune signalingIn VitroIndividualInflammationKnowledgeLibrariesLinkLysineMalignant NeoplasmsMetabolicMetabolic ControlMetabolismMitochondriaModelingNutrientObesityOutcomePathologicPathway interactionsPeptidesPhenotypePost-Translational Protein ProcessingProcessProteinsProteomicsReaderRegulationRoleSignal PathwaySignal TransductionSirolimusSirtuinsSiteStressTestingTranscriptional RegulationWorkYeast Model SystemYeastsanalogcell growthchemical geneticsepigenetic regulationepigenomegenetic analysishistone modificationinhibitormutantnovelpreventsuccesstumorigenesis
项目摘要
Project Summary
Environmental nutrient availability and metabolism profoundly affects an individual’s health, while deregulation
of nutrient signaling contributes to many diseases, including cancer. Nutrient signaling and metabolism
regulate the epigenome to affect cellular phenotype and function, yet mechanisms explaining how nutrients
signal to the epigenome are lacking. Defining these mechanisms constitutes a critical scientific problem that is
essential to address. By defining these mechanisms, we will understand how nutrient exposures affect health,
and how aberrant nutrient signaling causes disease. The mechanistic target of rapamycin complex 1
(mTORC1) is an evolutionarily conserved nutrient activated signaling pathway. MTORC1 responds to diverse
nutrient and metabolic inputs to promote cell growth and proliferation, and it is deregulated in cancer and other
diseases. While mTORC1 is an emerging epigenetic regulator, how it signals to the epigenome is unknown. In
this project, we will use a yeast model to build on our previous successes to define these mechanisms. Herein,
we will test the overarching hypothesis that TORC1 signaling controls the chromatin binding of architectural
proteins and histone reader proteins that maintain viability during nutrient stress and regulate metabolic gene
expression. In Aim I, we will identify specific epigenetic pathways acting on histone H3 that promote binding of
high mobility group box (HMGB) proteins to chromatin to prevent cell death under nutrient stress conditions.
We then will define biochemically and genetically how non-chromatin bound HMGB proteins cause cell death
during TORC1 stress. Stressed human cells evict HMGB1 from chromatin to affect cytoplasmic metabolic
activities, initiate innate immune signaling and inflammation, and promote tumorigenesis. These yeast studies
will identify conserved epigenetic pathways that are critical for retaining HMGB1 on chromatin during mTORC1
stress to prevent such HMGB1-induced pathological effects. Aim II will use proteomic and genomic
approaches to define how yeast TORC1 represses conserved sirtuin histone deacetylase activity to regulate
histone reader chromatin binding and control mitochondrial metabolic transcription. We then will perform
mechanistic studies to assess how these histone reader proteins transcriptionally regulate metabolic gene
expression. By the project’s conclusion, we will have defined novel and conserved mechanisms used by
TORC1 to modify the epigenome, which prevent cell death during nutrient stress and regulate metabolic gene
transcription. These mechanisms will be directly relevant for understanding how human mTORC1 deregulation
alters the epigenome to cause disease.
项目摘要
环境养分的可用性和代谢深刻影响和个人的健康,而放松管制
营养信号传导有助于许多疾病,含有癌症。
调节表观基因组以影响细胞表型和功能,但机制解释了营养的方式
缺乏向表观基因组的信号。
通过定义这些机制来解决,我们将了解营养的暴露如何影响健康
以及异常的营养信号传导如何引起疾病。
(MTORC1)是一种进化保守的营养活化信号通路。
营养和代谢输入以促进细胞的生长和泛滥,并在乙醚中进行了调节
疾病。
这个项目,我们将每年一年一年来建立我们先前的继任者,以定义你的你你的你你的你的你。
我们将测试TORC1信号传导控制体系结构的染色质结合的总体假设
蛋白质和组蛋白读取器读取器蛋白质在营养应激期间保持生存能力并调节代谢基因
在AIM I中,我们将确定作用于组蛋白H3的特定表观遗传途径
高迁移率组盒(HMGB)蛋白与染色质蛋白,以防止在营养应激条件下细胞死亡。
我们将从生化和遗传上定义非染色质蛋白如何引起细胞死亡
在TORC1应力期间,人类细胞从染色质中驱逐HMGB1
活性,启动先天免疫信号传导和炎症,并促进这些酵母研究
将确定保守的表观遗传途径,对于在MTORC1期间保留HMGB1至关重要的表观遗传途径
预防这种HMGB1诱导的病理作用的压力将使用蛋白质组学和基因组。
定义有多少TORC1抑制保守的SIRTUIN组蛋白脱纤酶活性以调节的方法
组蛋白读取器染色质结合和控制mitchondrial代谢转录。
机械研究以评估组蛋白读取器蛋白转录调节代谢基因
根据项目的结论,我们将定义
torc1扭曲表观基因组,可防止细胞死亡死亡nutrieng n Nutrieng senness senses and somembolic基因
这些机制将与人类MTORC1放松如何直接相关
改变表观基因组以引起疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Laribee其他文献
Ronald Laribee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Laribee', 18)}}的其他基金
Mechanisms of Target of Rapamycin Complex 1 Dependent Epigenetic Regulation
雷帕霉素复合物1依赖的表观遗传调控靶点机制
- 批准号:
10653258 - 财政年份:2022
- 资助金额:
$ 30.8万 - 项目类别:
Endolysosomal-nuclear communication mediated through V-ATPase and NHE9 dependent epigenetic signaling
通过 V-ATP 酶和 NHE9 依赖的表观遗传信号介导的内溶酶体-核通讯
- 批准号:
9759328 - 财政年份:2019
- 资助金额:
$ 30.8万 - 项目类别:
Mechanisms of transcription coregulator usage by the target of rapamycin pathway
雷帕霉素通路靶标使用转录共调节因子的机制
- 批准号:
9109664 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Mechanisms of transcription coregulator usage by the target of rapamycin pathway
雷帕霉素通路靶标使用转录共调节因子的机制
- 批准号:
8552300 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Role of Histone H3 Lysine 36 Methylation in Chromatin
组蛋白 H3 赖氨酸 36 甲基化在染色质中的作用
- 批准号:
7050183 - 财政年份:2005
- 资助金额:
$ 30.8万 - 项目类别:
Role of Histone H3 Lysine 36 Methylation in Chromatin
组蛋白 H3 赖氨酸 36 甲基化在染色质中的作用
- 批准号:
6883418 - 财政年份:2005
- 资助金额:
$ 30.8万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别:
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别:
Metabolism and Epigenetic Regulation are Couples in Transdifferentiation and Vascular Regeneration
代谢和表观遗传调控是转分化和血管再生的结合体
- 批准号:
10905167 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别: