Cardiomyocyte Non-autonomous Factors and Cardiac Regeneration in Large Mammals
大型哺乳动物心肌细胞非自主因素与心脏再生
基本信息
- 批准号:10515862
- 负责人:
- 金额:$ 68.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-09 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAdultAngiogenic FactorAntibodiesBiocompatible MaterialsBirthBlood VesselsBlood flowCardiacCardiac MyocytesCase StudyCell CycleCell SurvivalCellsChemicalsClinical ResearchDataEmbryoEndothelial CellsEndotheliumFDA approvedFamily suidaeFishesFunctional disorderFutureGanglionectomyHeartHeart InjuriesHumanHydrogelsInjuryInterventionLinkMaintenanceMammalsMapsMediatingModelingMusMyocardialMyocardial InfarctionMyocardial IschemiaMyocardiumNatural regenerationNeonatalNerve Growth FactorsNeuregulin 1NeuronsNewborn InfantNutrientOperative Surgical ProceduresPatientsPeripheralPharmacologyProteomicsPublicationsRadionuclide ImagingRecombinantsRegenerative capacityRegenerative responseReportingResearchRodentRoleSignal PathwaySmooth Muscle MyocytesStressTestingTherapeuticTherapeutic InterventionVagotomyVascular Endothelial CellVascular Endothelial Growth FactorsVascularizationVentricularVertebratesZebrafishangiogenesisbasebevacizumabcardiac regenerationcardiogenesiscongenital heart disordercytokineenhancing factorexperimental studyfetalheart innervationinduced pluripotent stem cell derived cardiomyocytesischemic injurymouse modelnanoparticle deliveryneonatal micenerve supplyneural networkneurotrophic factornovelparacrinepostnatalregeneration potentialrelating to nervous systemresponsesingle-cell RNA sequencingultrasound
项目摘要
Project Summary
In contrast to the cardiomyocytes (CMs) from lower vertebrates, adult mammalian CMs possess very limited
regenerative potential as a result of cell cycle exit. Interestingly, neonatal mice retain cardiac regenerative
capacity, which is lost by postnatal day 7. We have recently shown that 1-day-old pigs can also regenerate lost
myocardium in response to myocardial infarction (MI). This regeneration is mediated by the proliferation of
preexisting CMs, which does not occur when CMs permanently exit the cell cycle. Mechanisms underlying the
injury-mounted regenerative response especially in large mammals are not fully understood. However,
investigating underlying mechanisms is likely to identify novel targets for future therapeutic interventions.
Recent studies in fish and rodents emphasized the critical importance of vascularization and autonomic
innervation of the regenerating myocardium in zebrafish and neonatal mouse hearts. Besides their function to
provide nutrients, transport metabolites and enable adaptation to stress, it is unknown whether vascular and
neuronal cells, via paracrine interactions, also promote CM proliferation. Intriguingly, our preliminary data
support the idea that soluble factors, e.g., cytokines, secreted from vascular endothelial cells and peripheral
sympathetic neurons significantly stimulate cell cycle activity of co-cultured human induced pluripotent stem
cells-derived CMs, suggesting a critical role of nonmyocyte-CM interactions in modulating CM proliferation in
hearts of larger mammals post injury. In this project, we will exploit the established high regenerative capacity
of the neonatal pig heart model to experimentally address the role of nonmyocytes in injury-induced cardiac
regeneration in large mammals. Two specific aims are proposed. Aim 1 is to define the role of early
revascularization in injury-mounted cardiac regeneration. We will test the hypothesis that early
revascularization is essential for cardiac regeneration in neonatal pigs, and determine whether angiogenesis
promotes cardiac regeneration through the release of pro-myogenic factors from endothelial and/or smooth
muscle cells and/or via de novo formation of functional vessels for maintenance of CM viability. Aim 2 is to
delineate the role of autonomic innervation in injury-mounted cardiac regeneration. We will test the
hypothesis that innervation is essential for post injury cardiac regeneration in neonatal pigs, and determine if
biomaterial-mediated epicardial delivery of angiogenic and neurotrophic factors enhances cardiac regeneration
in neonatal pigs post MI.
项目摘要
与下脊椎动物的心肌细胞(CMS)相反,成年哺乳动物CM非常有限
细胞周期出口导致再生潜力。有趣的是,新生小鼠保留心脏再生
容量,在产后第7天就丢失了。我们最近表明1天大的猪也可能会再生
响应心肌梗塞(MI)的心肌。这种再生是由
先前存在的CM,当CMS永久退出细胞周期时不会发生。基础的机制
尤其是在大型哺乳动物中造成损伤的再生反应。然而,
研究基本机制可能会确定未来治疗干预措施的新目标。
鱼类和啮齿动物的最新研究强调了血管形成和自主神经的重要性
斑马鱼和新生小鼠心脏中再生心肌的神经。除了它们的功能
提供营养素,运输代谢物并使适应压力适应,尚不清楚血管和
神经元细胞通过旁分泌相互作用也促进CM增殖。有趣的是,我们的初步数据
支持以下观点,例如可溶性因子,例如细胞因子,从血管内皮细胞和周围分泌
交感神经元显着刺激共培养的人类诱导多能茎的细胞周期活性
细胞来源的CM,表明非甲状腺细胞相互作用在调节CM增殖中的关键作用
受伤后大型哺乳动物的心脏。在这个项目中,我们将利用既定的高再生能力
新生儿猪心脏模型的实验性解决非甲虫细胞在损伤诱导心脏中的作用
大型哺乳动物的再生。提出了两个具体目标。目标1是定义早期的作用
损伤的心脏再生中的血运重建。我们将测试早期的假设
血运重建对于新生儿猪的心脏再生至关重要,并确定是否是血管生成
通过从内皮和/或光滑的促肌原生成因子释放来促进心脏再生
肌肉细胞和/或通过从头形成功能血管,以维持CM生存能力。目标2是
描述自主神经在损伤安装心脏再生中的作用。我们将测试
假设神经对于新生儿猪的损伤后心脏再生至关重要,并确定是否是否
生物材料介导的心外膜输送的血管生成和神经营养因子增强了心脏再生
在新生儿猪中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wuqiang Zhu其他文献
Wuqiang Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wuqiang Zhu', 18)}}的其他基金
Cardiomyocyte Non-autonomous Factors and Cardiac Regeneration in Large Mammals
大型哺乳动物心肌细胞非自主因素与心脏再生
- 批准号:
10680563 - 财政年份:2022
- 资助金额:
$ 68.45万 - 项目类别:
Myocardial Repair with a Novel Engineered Cardiac Muscle Patch
使用新型工程心肌补片修复心肌
- 批准号:
10229464 - 财政年份:2019
- 资助金额:
$ 68.45万 - 项目类别:
Myocardial Repair with a Novel Engineered Cardiac Muscle Patch
使用新型工程心肌补片修复心肌
- 批准号:
10471216 - 财政年份:2019
- 资助金额:
$ 68.45万 - 项目类别:
Myocardial Repair with a Novel Engineered Cardiac Muscle Patch
使用新型工程心肌补片修复心肌
- 批准号:
10002275 - 财政年份:2019
- 资助金额:
$ 68.45万 - 项目类别:
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel Bone Adhesive Scaffold to Accelerate Bone Regeneration and Improve Ridge Height Maintenance for the Treatment of Patients with Residual Ridge Resorption
开发新型骨粘合剂支架以加速骨再生并改善牙槽嵴高度维持以治疗残留牙槽嵴吸收的患者
- 批准号:
10603678 - 财政年份:2023
- 资助金额:
$ 68.45万 - 项目类别:
Blending Dentin to Dentin: Biometric Hydrogels for Dentin Tissue Engineering
将牙本质与牙本质混合:用于牙本质组织工程的生物识别水凝胶
- 批准号:
10795693 - 财政年份:2023
- 资助金额:
$ 68.45万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 68.45万 - 项目类别:
Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
- 批准号:
10561108 - 财政年份:2023
- 资助金额:
$ 68.45万 - 项目类别: