Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions

通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性

基本信息

  • 批准号:
    10651834
  • 负责人:
  • 金额:
    $ 39.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-20 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Receptor protein tyrosine phosphatases (RPTPs) play critical signaling regulatory roles in development, health, and disease progression. Despite the clear importance of RPTPs in signal transduction, very little is known about the structure-function relationships that underpin the regulation of their activity. The reported ability of RPTP homodimerization to antagonize their catalytic activity, however, presents potential opportunities to develop strategies to promote RPTP activity against their oncogenic receptor tyrosine kinase (RTK) substrates. We recently showed, using PTPRJ/EGFR as a model RPTP/RTK pair, that: (i) homodimerization of PTPRJ (also known as DEP1) is regulated by transmembrane domain interactions, and (ii) disrupting these interactions can antagonize PTPRJ homodimerization, reduce substrate EGFR phosphorylation, and antagonize EGFR-driven cell phenotypes. Here, we propose to build upon these new insights along three thematically interconnected, but non-overlapping, specific aims, with the ultimate goals of: (1) demonstrating that RPTP TM domain interactions are essential in regulating their activity and substrate access, and (2) developing a new therapeutic approach to promote RPTP activity against their oncogenic RTK substrates. In our first aim, we will determine the molecular determinants regulating the heterodimerization of PTPRJ with EGFR. These studies will be complemented by extending them to understand how PTPRJ TM domain mutants affect receptor trafficking and ultimate cell outcomes. In the second aim, we will design and select peptides capable of binding to PTPRJ TM domains and test their ability to disrupt PTPRJ homodimerization, promote PTPRJ activity against EGFR and other substrate RTKs, and selectively target human tumor xenografts in mice. In the third aim, we will identify other candidate RTK substrates whose regulation by PTPRJ depends upon TM domain-mediated heterodimerization, and determine how different cellular contexts predict the cell signaling and phenotype outcome of interfering with PTPRJ dimerization through TM domains. To do so, we will implement a systems biology approach based on data-driven computational modeling of phenotypic measurements and global mass spectrometry measurements of protein phosphorylation and expression in a panel of cell lines. This aim is motivated by an understanding that all RPTPs have multiple substrates and that variations in expression of those substrates among cells may lead to different outcomes when PTPRJ dimerization is disrupted. Ultimately, the studies proposed here stand to advance both our basic biological understanding of RPTP biology, which is critically needed, and to lead to new methods to target signaling through oncogenic RTKs that may be less susceptible to common mechanisms of acquired resistance to RTK inhibitors.
项目概要 受体蛋白酪氨酸磷酸酶 (RPTP) 在发育、健康、 和疾病进展。尽管 RPTP 在信号转导中的重要性显而易见,但人们知之甚少 关于支撑其活动调节的结构-功能关系。报告的能力 然而,RPTP 同二聚化以拮抗其催化活性提供了潜在的机会 制定策略以促进 RPTP 针对其致癌受体酪氨酸激酶 (RTK) 底物的活性。 我们最近使用 PTPRJ/EGFR 作为模型 RPTP/RTK 对表明:(i)PTPRJ 的同二聚化 (也称为 DEP1)受到跨膜结构域相互作用的调节,并且 (ii) 破坏这些 相互作用可以拮抗 PTPRJ 同二聚化,减少底物 EGFR 磷酸化,并且 拮抗 EGFR 驱动的细胞表型。 在这里,我们建议沿着三个相互关联的主题建立这些新见解,但是 不重叠的具体目标,最终目标是:(1) 证明 RPTP TM 域相互作用 对于调节其活性和底物获取至关重要,并且(2)开发新的治疗方法 促进 RPTP 对其致癌 RTK 底物的活性。 在我们的第一个目标中,我们将确定调节 PTPRJ 异二聚化的分子决定因素 EGFR。这些研究将通过扩展它们来补充,以了解 PTPRJ TM 结构域突变体如何 影响受体运输和最终的细胞结果。第二个目标,我们将设计和选择肽 能够结合 PTPRJ TM 结构域并测试其破坏 PTPRJ 同二聚化、促进 PTPRJ 针对 EGFR 和其他底物 RTK 的活性,并选择性地靶向人类肿瘤异种移植物 老鼠。在第三个目标中,我们将确定其他候选 RTK 底物,其 PTPRJ 的调节取决于 TM 结构域介导的异二聚化,并确定不同的细胞环境如何预测细胞 通过 TM 结构域干扰 PTPRJ 二聚化的信号传导和表型结果。为此,我们 将实施基于数据驱动的表型计算模型的系统生物学方法 蛋白质磷酸化和表达的测量和全局质谱测量 细胞系面板。这一目标的动机是了解所有 RPTP 都有多种底物,并且 PTPRJ 时,细胞间这些底物表达的差异可能会导致不同的结果 二聚化被破坏。 最终,这里提出的研究将增进我们对 RPTP 的基本生物学理解 生物学,这是迫切需要的,并通过致癌 RTK 开发靶向信号传导的新方法, 可能不太容易受到 RTK 抑制剂获得性耐药的常见机制的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew J Lazzara其他文献

Matthew J Lazzara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew J Lazzara', 18)}}的其他基金

EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
  • 批准号:
    10525284
  • 财政年份:
    2022
  • 资助金额:
    $ 39.51万
  • 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
  • 批准号:
    10703483
  • 财政年份:
    2022
  • 资助金额:
    $ 39.51万
  • 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
  • 批准号:
    10907884
  • 财政年份:
    2022
  • 资助金额:
    $ 39.51万
  • 项目类别:
Engineering ERK-specificity for cancer suicide gene therapy
工程 ERK 特异性用于癌症自杀基因治疗
  • 批准号:
    10044569
  • 财政年份:
    2020
  • 资助金额:
    $ 39.51万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by TargetingTransmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10601618
  • 财政年份:
    2020
  • 资助金额:
    $ 39.51万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10265510
  • 财政年份:
    2020
  • 资助金额:
    $ 39.51万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10098384
  • 财政年份:
    2020
  • 资助金额:
    $ 39.51万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10436341
  • 财政年份:
    2020
  • 资助金额:
    $ 39.51万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10797721
  • 财政年份:
    2020
  • 资助金额:
    $ 39.51万
  • 项目类别:
Optimal control models of epithelial-mesenchymal transition for the design of pancreas cancer combination therapy
用于设计胰腺癌联合治疗的上皮-间质转化的最佳控制模型
  • 批准号:
    10450032
  • 财政年份:
    2019
  • 资助金额:
    $ 39.51万
  • 项目类别:

相似国自然基金

FOXD1-SFRP2及其特异性激动剂在骨关节炎中的功能及作用机制探究
  • 批准号:
    82372438
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
  • 批准号:
    82303819
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
  • 批准号:
    82304418
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
  • 批准号:
    82304584
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向STING激动剂和TREM2抑制剂增强PD-1抑制剂对胰腺癌的抗肿瘤作用研究
  • 批准号:
    82303740
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 39.51万
  • 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
  • 批准号:
    10638439
  • 财政年份:
    2023
  • 资助金额:
    $ 39.51万
  • 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
  • 批准号:
    10677932
  • 财政年份:
    2023
  • 资助金额:
    $ 39.51万
  • 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
  • 批准号:
    10696749
  • 财政年份:
    2023
  • 资助金额:
    $ 39.51万
  • 项目类别:
Targeting Trained Immunity in Trauma-Induced Immune Dysregulation
针对创伤引起的免疫失调中训练有素的免疫力
  • 批准号:
    10714384
  • 财政年份:
    2023
  • 资助金额:
    $ 39.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了