Sensing and manipulating neuromodulatory signaling in vivo
体内传感和操纵神经调节信号
基本信息
- 批准号:10650681
- 负责人:
- 金额:$ 256.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAcuteAffectAnimal BehaviorAnimalsBehaviorBenignBiological AssayBrainCell physiologyCellsCharacteristicsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplementCyclic AMPCyclic AMP-Dependent Protein KinasesDefectDevelopmentDissectionDopamineEventExhibitsFluorescence Resonance Energy TransferFunctional disorderFutureG-Protein-Coupled ReceptorsGoalsHabitatsHeterogeneityImageIn VitroIndividualKineticsLightMammalian CellMeasurementMediatingMediatorMethodsMicrodialysisMonitorMusNeuromodulatorNeuronsNoiseNorepinephrineOutcomeOxygenPathway interactionsPerformancePhosphotransferasesPhysiologicalProtein Kinase CReagentReportingResearchResolutionSerotoninSideSignal PathwaySignal TransductionSynaptic TransmissionSynaptic plasticityTestingTimeVariantViral VectorVirusVisualizationWestern Blottingawakecell typedesignexperienceexperimental studyextracellularhigh throughput screeningimprovedin vivoin vivo imaginginterdisciplinary approachneuronal excitabilityneuropsychiatric disorderneuroregulationnoveloptogeneticsoverexpressionprototyperational designreceptorresponsescreeningsensorside effectspatiotemporalsubcellular targetingsuccesstemporal measurementtoolvoltage
项目摘要
PROJECT SUMMARY
Neuromodulation, such as that mediated by the neuromodulators norepinephrine, acetylcholine, and
dopamine, imposes powerful control over brain function. It regulates the excitability, synaptic plasticity,
and other aspects of neuronal function. Defects in neuromodulation are associated with many
neuropsychiatric diseases. Neuromodulators exert their functions by regulating intracellular signaling
events via their corresponding G protein-coupled receptors (GPCRs). Although in vivo interrogation of
extracellular neuromodulators has started to become possible, the effects of neuromodulators on
subcellular signaling and neuronal function are cell type-specific. Monitoring the cell type-specific
outcomes of neuromodulatory subcellular signaling events remains difficult. There is also a lack of
practical tools for antagonizing neuromodulatory signaling events with high temporal resolution in vivo,
which is required for establishing the causal relationship between the signaling events and neuronal
functions or animal behavior.
To overcome these problems, we propose to develop novel genetically encoded sensors for examining
the activities, in vivo with single-neuron resolution, of an understudied neuromodulatory signaling
pathway: the protein kinase C (PKC) pathway. Although prototypic genetically encoded PKC sensors
based on Förster resonance energy transfer (FRET) have been used for experiments in vitro, their
application in vivo has been difficult due to lower signal-to-noise ratios under the more challenging in
vivo imaging conditions. Building on our previous successful experience in developing sensors for the
cAMP and protein kinase A (PKA) pathway for in vivo imaging, we will employ a multi-pronged approach
to characterize and improve PKC sensors for in vivo imaging. In addition, we will develop novel
genetically encoded actuators for both the PKA and PKC pathways that are effective only when they
are stimulated by blue light. We will validate the utility of these tools for monitoring or manipulating
neuromodulatory activities in awake mice during behavior. The successful tools will be packaged into
viral vectors for their easy introduction in vivo, and will be disseminated to the research community. If
successful, our efforts will provide the research community with a previously unattainable ability to
conduct large-scale monitoring and manipulation of neuromodulatory signaling activities in the brain at
the cellular and circuit levels. This ability to quantify and manipulate neuromodulatory signaling will
complement the measurements of extracellular neuromodulators and neuronal electric activities to
enhance our understanding of brain function underlying animal behavior.
项目概要
神经调节,例如由神经调节剂去甲肾上腺素、乙酰胆碱和
多巴胺对大脑功能有强大的控制作用,它调节兴奋性、突触可塑性、
以及神经功能的其他方面的缺陷与许多方面有关。
神经精神疾病。神经调节剂通过调节细胞内信号传导发挥其功能。
通过其相应的 G 蛋白偶联受体 (GPCR) 进行体内研究。
细胞外神经调节剂已开始成为可能,神经调节剂对
亚细胞信号传导和神经功能是细胞类型特异性的。
神经调节亚细胞信号传导事件的结果仍然很困难。
在体内以高时间分辨率拮抗神经调节信号事件的实用工具,
这是建立信号事件和神经元之间因果关系所必需的
功能或动物行为。
为了克服这些问题,我们建议开发新型基因编码传感器来检查
尚未研究的神经调节信号传导在体内的单神经元分辨率活动
途径:蛋白激酶 C (PKC) 途径,虽然是原型基因编码的 PKC 传感器。
基于福斯特共振能量转移(FRET)的技术已用于体外实验,其
由于在更具挑战性的条件下信噪比较低,体内应用一直很困难
基于我们之前开发传感器的成功经验。
cAMP和蛋白激酶A(PKA)通路进行体内成像,我们将采用多管齐下的方法
表征和改进用于体内成像的 PKC 传感器。
PKA 和 PKC 通路的基因编码执行器仅在它们有效时才有效
我们将验证这些工具在监测或操纵方面的实用性。
清醒小鼠行为过程中的神经调节活动将被包装成成功的工具。
病毒载体易于引入体内,并将传播给研究界。
如果成功的话,我们的努力将为研究界提供以前无法实现的能力
对大脑中的神经调节信号活动进行大规模监测和操纵
这种量化和操纵神经调节信号的能力将在细胞和电路水平上发挥作用。
补充细胞外神经调节剂和神经元电活动的测量
增强我们对动物行为背后的大脑功能的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haining Zhong其他文献
Haining Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haining Zhong', 18)}}的其他基金
Fluorescence labeling of PSD-95 at endogenous levels for single cell imaging
内源水平 PSD-95 的荧光标记用于单细胞成像
- 批准号:
8702775 - 财政年份:2014
- 资助金额:
$ 256.58万 - 项目类别:
Examining the architecture of synapses in brain tissue at nanometer resolution
以纳米分辨率检查脑组织突触的结构
- 批准号:
8145426 - 财政年份:2011
- 资助金额:
$ 256.58万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Consequences of Perinatal Nicotine Exposure on Functional Brainstem Development
围产期尼古丁暴露对功能性脑干发育的影响
- 批准号:
10752337 - 财政年份:2023
- 资助金额:
$ 256.58万 - 项目类别:
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
- 批准号:
10646631 - 财政年份:2023
- 资助金额:
$ 256.58万 - 项目类别:
Optogenetic and chemogenetic regulation of uterine vascular function
子宫血管功能的光遗传学和化学遗传学调控
- 批准号:
10785667 - 财政年份:2023
- 资助金额:
$ 256.58万 - 项目类别:
Blood Flow Regulation and Neuromuscular Function Post-Stroke
中风后的血流调节和神经肌肉功能
- 批准号:
10751266 - 财政年份:2023
- 资助金额:
$ 256.58万 - 项目类别:
Caffeine and Postoperative Neurocognitive Recovery
咖啡因与术后神经认知恢复
- 批准号:
10517443 - 财政年份:2022
- 资助金额:
$ 256.58万 - 项目类别: