Enabling Fully Automated Closed Loop Control in Type 1 Diabetes Through an Artificial Intelligence Meal Detection Algorithm and Pramlintide

通过人工智能膳食检测算法和普兰林肽实现 1 型糖尿病的全自动闭环控制

基本信息

  • 批准号:
    10647759
  • 负责人:
  • 金额:
    $ 56.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-20 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Summary People with type 1 diabetes (T1D) have autoimmune destruction of beta cells resulting in insufficient insulin to maintain normal glucose levels, thereby requiring exogenous insulin treatment, typically delivered subcutaneously either continuously infused through an insulin pump or by injection multiple times throughout the day. There are now commercial closed loop systems available that enable automated delivery of fast- acting insulin in response to wireless continuous glucose monitoring (CGM) sensors that inform an automated control algorithm to calculate and deliver insulin via a pump. Unfortunately, current commercial closed loop systems are hybrid systems that require users to announce meals to the system, and these hybrid systems do not control glucose well following meals. People oftentimes forget to announce their meals or misestimate their carbohydrate intake, thereby leading to poor overall postprandial glucose control. The primary benefit of hybrid closed loop systems has been during the overnight period when meals are not consumed. In a normal working beta cell, the hormone amylin is co-secreted with insulin in response to meals to help suppress glucagon production and delay gastric emptying, thereby reducing postprandial glucose increases. Pramlintide is an analog of the endogenous hormone amylin. Our commercial partner, Adocia, has developed a coformulation of insulin and pramlintide. In this project, we will develop a dual hormone (insulin and pramlintide), fully automated closed loop system with a meal detection algorithm that will enable substantial improvements in postprandial glycemic control for people with T1D while minimizing patient burden by not requiring a meal announcement to the system. Our group has previously developed a multi hormone closed loop system (insulin and glucagon) and we have developed models of insulin, pramlintide, glucagon, and carbohydrate kinetics and dynamics that will be integrated into a new insulin+pramlintide closed loop model predictive control (MPC) system (Aim 1). We have also developed a meal detection algorithm that will be integrated with this MPC control algorithm to dose insulin and pramlintide shortly after a meal is detected, thereby eliminating the need for the user to announce this meal to the system (Aim 1). We will use our in silico simulator of glucose metabolism to identify the optimal dosing amount and timing when insulin and pramlintide are delivered in response to the meal detection algorithm (Aim 1). Next, we will evaluate the optimal insulin and pramlintide dosing therapies identified in Aim 1 and evaluate the top 4 strategies during an in-clinic meal test in a 4-arm randomized crossover study in 14 people with T1D (Study 1a, Aim 2). We will then evaluate the optimal insulin and pramlintide dosing therapy identified in Study 1a and compare with various insulin-only hybrid and automated therapies in an in-clinic randomized crossover study (Study 1b, Aim2). Finally, in Aim 3, we will evaluate the optimal insulin and pramlintide dosing therapy determined in Aim 2 and compare it with the Tandem Diabetes Control-IQ commercial hybrid closed loop system.
概括 患有1型糖尿病(T1D)的人会自动免疫β细胞,导致胰岛素不足 维持正常的葡萄糖水平,因此需要外源胰岛素治疗,通常会递送 皮下持续通过胰岛素泵连续注入或多次注射 一天。现在有商业闭环系统可实现快速交付 响应无线连续葡萄糖监测(CGM)传感器的作用胰岛素,该传感器告知自动化 控制算法通过泵计算和输送胰岛素。不幸的是,当前的商业闭环 系统是混合系统,需要用户向系统宣布餐点,这些混合动力系统确实 进餐后不能很好地控制葡萄糖。人们通常会忘记宣布他们的饭菜或误会 碳水化合物的摄入量,从而导致餐后葡萄糖总体控制差。混合动力的主要好处 封闭的循环系统在不消耗餐点的过夜期间。在正常工作中 β细胞,激素氨基蛋白与胰岛素共归因于餐食,以帮助抑制胰高血糖素 生产和延迟胃排空,从而减少餐后葡萄糖增加。 Pramlintide是一个 内源激素淀粉素的类似物。我们的商业合作伙伴Adocia已发展 胰岛素和pramlintide。在这个项目中,我们将开发一种双激素(胰岛素和pramlintide),完全 使用餐检测算法的自动闭环系统,该算法将大大改进 T1D患者的餐后血糖控制,同时不需要用餐来最大程度地减少患者负担 通知系统。我们的小组以前已经开发了多激素闭环系统 (胰岛素和胰高血糖素),并且我们开发了胰岛素,pramlintide,胰高血糖素和碳水化合物的模型 动力学和动力学将集成到新的胰岛素+pramlintide闭环模型预测 控制(MPC)系统(AIM 1)。我们还开发了一种将与 该MPC对照算法检测到饭后不久剂量胰岛素和pramlintide,从而消除了 用户需要向系统宣布这顿饭(AIM 1)。我们将在葡萄糖的硅硅中使用我们的 代谢以确定胰岛素和pramlintide的最佳剂量量和时间安排 对餐检测算法的响应(AIM 1)。接下来,我们将评估最佳胰岛素和pramlintide 在AIM 1中鉴定出的剂量疗法,并在4臂的临床餐内测试中评估前4个策略 在14人患有T1D的人中的随机跨界研究(研究1A,AIM 2)。然后,我们将评估最佳胰岛素 和研究1a中确定的pramlintide剂量疗法,并与各种仅胰岛素杂种和 在临界内随机分频研究中的自动疗法(研究1B,AIM2)。最后,在AIM 3中,我们将 评估在AIM 2中确定的最佳胰岛素和pramlintide剂量疗法,并将其与 串联糖尿病控制-IQ商业混合闭环系统。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Developments in Glucagon Treatment for Hypoglycemia.
胰高血糖素治疗低血糖的新进展。
  • DOI:
    10.1007/s40265-022-01754-8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.5
  • 作者:
    Story,LesleAnnHayward;Wilson,LeahM
  • 通讯作者:
    Wilson,LeahM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter G Jacobs其他文献

Peter G Jacobs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter G Jacobs', 18)}}的其他基金

Enabling Fully Automated Closed Loop Control in Type 1 Diabetes Through an Artificial Intelligence Meal Detection Algorithm and Pramlintide
通过人工智能膳食检测算法和普兰林肽实现 1 型糖尿病的全自动闭环控制
  • 批准号:
    10276661
  • 财政年份:
    2021
  • 资助金额:
    $ 56.13万
  • 项目类别:
Enabling Fully Automated Closed Loop Control in Type 1 Diabetes Through an Artificial Intelligence Meal Detection Algorithm and Pramlintide
通过人工智能膳食检测算法和普兰林肽实现 1 型糖尿病的全自动闭环控制
  • 批准号:
    10472749
  • 财政年份:
    2021
  • 资助金额:
    $ 56.13万
  • 项目类别:
Improving Glycemic Management in Patients with Type 1 Diabetes Using a Context-aware Automated Insulin Delivery System
使用情境感知自动胰岛素输送系统改善 1 型糖尿病患者的血糖管理
  • 批准号:
    10402778
  • 财政年份:
    2019
  • 资助金额:
    $ 56.13万
  • 项目类别:
In-home monitoring system for assessing gait using wall-mounted RF transceivers
使用壁挂式射频收发器评估步态的家用监控系统
  • 批准号:
    8904402
  • 财政年份:
    2015
  • 资助金额:
    $ 56.13万
  • 项目类别:

相似国自然基金

无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
  • 批准号:
    62301532
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 56.13万
  • 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 56.13万
  • 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
  • 批准号:
    10765991
  • 财政年份:
    2023
  • 资助金额:
    $ 56.13万
  • 项目类别:
The perivascular space: A structural link between inadequate sleep, glymphatic dysfunction, and neurocognitive outcomes in adolescents
血管周围空间:青少年睡眠不足、类淋巴功能障碍和神经认知结果之间的结构联系
  • 批准号:
    10578466
  • 财政年份:
    2023
  • 资助金额:
    $ 56.13万
  • 项目类别:
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
  • 批准号:
    10735164
  • 财政年份:
    2023
  • 资助金额:
    $ 56.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了