Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
基本信息
- 批准号:10648772
- 负责人:
- 金额:$ 25.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAdolescent and Young AdultAdultAgeAlgorithmsBehavioralCOVID-19COVID-19 pandemicCaringCause of DeathCessation of lifeClinicClinicalCollaborationsCommunicationDiscover, Design, Build, and Test FrameworkDiseaseDocumentationEffectiveness of InterventionsEmergency department visitFoundationsFutureHealthHealth PersonnelHealthcareHealthcare SystemsHospitalizationIndividualMental HealthMethodsModelingOutcomePathway interactionsPatient-Centered CarePatientsPopulationPredictive AnalyticsPrimary CareProcessProviderQualitative MethodsRecoveryReportingResearchResearch PersonnelRiskRisk AssessmentSafetyStatistical Data InterpretationStatistical MethodsSuicideSuicide attemptSuicide preventionSurveysTechnologyTestingTimeUnited States Department of Veterans AffairsVeteransVisitWashingtonWorkadolescent patientcareerclinical careclinical decision supportclinical decision-makingclinical implementationclinical practicecostdesigneffectiveness evaluationemotional distressethnic disparityfollow-upfuture implementationhigh riskhuman centered designimplementation effortsimplementation evaluationimprovedmedical specialtiesmodel developmentmortalitymultidisciplinaryoutreachpilot testpredictive modelingprevention practiceprimary care clinicprimary care clinicianprimary care patientprimary care providerprogramsprototyperacial disparityreducing suiciderisk mitigationrisk prediction modelsocial stigmasociodemographicssuicidalsuicidal behaviorsuicidal morbiditysuicidal risksupport toolstoolusabilityvirtual
项目摘要
PROJECT SUMMARY
In 2020, suicide was among the top three causes of death for adolescents and young adults (age 10-34) and
among the top nine for adults (age 35-64). Recently, researchers have successfully developed suicide risk
prediction algorithms that have potential to vastly improve identification of individuals at high risk of suicide and
support primary care-based suicide prevention practices. However, there is very little evidence to guide routine
use of suicide risk prediction algorithms during healthcare encounters. The most well-known implementation
work to date has focused on outreach, like the ReachVet program, which researchers recently reported is
associated with greater treatment engagement and safety plan documentation and fewer psychiatric
hospitalizations, emergency department visits, and suicide attempts. Visit-based implementation efforts have
been less common. Kaiser Permanente Washington leaders piloted this approach using a using a visit-based
“flag” among providers in one mental health specialty clinic. The leader of this proposal partnered with
healthcare system leaders to conduct a mixed-method implementation evaluation, which found the visit-based
risk “flag” did not consistently prompt additional suicide risk assessment as intended by mental health
providers and provided a roadmap for quality improvement and future implementation efforts.
Therefore, the purpose of this project is to address the RFA-MH-22-120 objective by conducting a practice-
based pilot implementation evaluation designed to guide the use of suicide risk predictive analytics in primary
care. Specifically, a multi-disciplinary team of researchers, including developers of suicide risk predictive
analytics and primary care providers, will work in partnership to build and support implementation of clinical
decision support tools designed to identify and engage primary care patients (adults and adolescents) at high
risk of suicide in risk mitigation and follow-up care pathways. The research team will use the Discover, Design
and Build, and Test Human-Centered Design framework to support three specific aims:
1 (DISCOVER): Conduct qualitative and statistical analyses to identify opportunities to use predictive analytics
to guide clinical decision making to support suicide prevention in primary care.
2 (DESIGN & BUILD): Develop and iteratively refine clinical decision support using suicide risk predictive
analytics that will augment workflows for both identifying and engagement primary care patients (age 13+) at
high-risk of suicide.
3 (TEST): Pilot test implementation of clinical decision support prototypes in 1-3 primary care clinics and
evaluate the implementation via 1) provider surveys and 2) statistical analysis of clinical process and suicide
attempt outcomes.
This work will support use of suicide risk predictive analytics by healthcare systems nationwide and lay a
strong foundation for future evaluations of the effectiveness of this intervention for preventing suicide.
项目概要
2020年,自杀是青少年和年轻人(10-34岁)的三大死因之一,
跻身成年人(35-64 岁)的前九名。最近,研究人员成功开发了自杀风险。
预测算法有可能大大提高对自杀高风险个体的识别,
支持以初级保健为基础的自杀预防实践,但是,很少有证据可以指导常规治疗。
在医疗保健过程中使用自杀风险预测算法是最著名的实施方式。
迄今为止的工作重点是外展,例如研究人员最近报道的 ReachVet 计划
与更多的治疗参与和安全计划文件以及更少的精神病相关
住院治疗、急诊就诊和自杀未遂的实施工作。
华盛顿凯撒医疗机构的领导人使用基于访问的方式试行了这种方法。
该提案的领导者与一家心理健康专科诊所的提供者合作。
医疗保健系统领导者进行了混合方法实施评估,发现基于访问的
风险“标志”并没有始终如一地提示心理健康所预期的额外自杀风险评估
提供者并提供了质量改进和未来实施工作的路线图。
因此,该项目的目的是通过进行实践来实现 RFA-MH-22-120 目标:
基于试点实施评估,旨在指导初级阶段自杀风险预测分析的使用
具体来说,是一个由多学科研究人员组成的团队,其中包括自杀风险预测的开发人员。
分析和初级保健提供者将合作建立和支持临床
旨在识别和吸引初级保健患者(成人和青少年)的决策支持工具
研究小组将使用发现、设计来降低自杀风险。
构建和测试以人为本的设计框架,以支持三个具体目标:
1(发现):进行定性和统计分析,以确定使用预测分析的机会
指导临床决策以支持初级保健中的自杀预防。
2(设计和构建):使用自杀风险预测开发并迭代完善临床决策支持
分析将增强识别和吸引初级保健患者(13 岁以上)的工作流程
自杀风险高。
3(测试):在 1-3 个初级保健诊所和
通过 1) 提供者调查和 2) 临床过程和自杀的统计分析来评估实施情况
尝试的结果。
这项工作将支持全国医疗保健系统使用自杀风险预测分析,并奠定基础
为未来评估这种预防自杀干预措施的有效性奠定了坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie Elissa Richards其他文献
Julie Elissa Richards的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie Elissa Richards', 18)}}的其他基金
RFA-CE-22-004, Optimizing Firearm Suicide Prevention in Healthcare
RFA-CE-22-004,优化医疗保健中的枪支自杀预防
- 批准号:
10558911 - 财政年份:2022
- 资助金额:
$ 25.64万 - 项目类别:
DAT- Implementing routine screening for cannabis and other drug use disorders in primary care: impact on diagnosis and treatment in a randomized pragmatic trial in 22 clinics
DAT-在初级保健中实施大麻和其他药物使用障碍的常规筛查:22 个诊所的随机实用试验对诊断和治疗的影响
- 批准号:
10454855 - 财政年份:2020
- 资助金额:
$ 25.64万 - 项目类别:
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新发现青少年痛风易感基因OTUD4对痛风炎症的影响及调控机制研究
- 批准号:82301003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人际压力影响青少年抑郁发展的心理与神经机制:基于自我意识的视角
- 批准号:32371118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
巨噬细胞M1型极化促进脂肪细胞肥大并抑制前脂肪细胞成脂分化在双酚F致青少年腹型肥胖中的作用机制研究
- 批准号:82373615
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别: