Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
基本信息
- 批准号:10646490
- 负责人:
- 金额:$ 62.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-17 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Absence of pain sensationAdjuvantAdverse eventAlgorithmsAnesthesia proceduresCaringCodeCollaborationsCommunitiesCommunity HospitalsDataData ScienceDepositionDepressed moodDisparateDisparityEconomicsElectronic Health RecordEnsureGeneral PopulationGenerationsGeographyGoalsGrantHealthHealthcareImpairmentIndividualInformaticsInfrastructureInstitute of Medicine (U.S.)Knowledge DiscoveryLeadLiteratureMachine LearningManualsMedicalMedical centerMethodsModelingMorbidity - disease rateNamesNational Institute of Drug AbuseNatural Language ProcessingObesityOperative Surgical ProceduresOpioidOutcomePainPain ResearchPain managementPathway interactionsPatientsPhenotypePopulationPopulation HeterogeneityPostoperative PainQuality of lifeRecordsRecoveryReportingResearchRiskRisk EstimateRisk FactorsSamplingSiteStandardizationStructureTechniquesTerminologyTestingTimeUnited States National Institutes of HealthValidationVariantVeteransVeterans Health AdministrationVulnerable PopulationsWorkadverse outcomeanalytical toolbiomedical informaticsclinical phenotypecohortdata formatdata modelingdata standardsdeep learningdepressed patientdiabeticeffective therapyelectronic datafundamental researchhealth assessmenthealth care settingshealth datahigh riskimprovedinformatics toolinnovationmachine learning methodmodel developmentmultimodalitynovelopen sourceopen source libraryopen source toolopiate toleranceopioid epidemicopioid usepain chronificationpain outcomepain scorepopulation basedprescription opioidrandom forestrisk sharingrisk stratificationsocialstructured datasupport vector machinesymposiumtooltool developmentunstructured dataweb site
项目摘要
ABSTRACT
Surgery is common and appropriate postoperative pain management is critical as poor management can impair
recovery and lead to adverse events, including prolonged opioid use and transition to chronic pain. Literature
suggests significant disparities exist with regard to pain management and its quality-of-life impacts, particularly
among vulnerable populations (e.g. depressed, obese and diabetics). However, there lacks risk stratification
tools to identify individuals at high risk for these disparate pain outcomes. Although pain scores are routinely
collected in electronic health records (EHRs), shared algorithms to utilize them for care improvement are limited.
To advance the efficient and effective use of the abundant amount of electronic data now available, a common
data model (CDM) is necessary: standardized structures, terminologies, and rules to represent EHR data. Using
a CMD for postoperative pain research would facilitate timely evidence generation across multiple populations
and settings, which can provide critical evidence to stakeholders and move the field away from pain treatment
for the ‘average’ patient to pain treatment for an individual. In this grant, we propose an innovative approach to
advance the systematic analysis of postoperative pain across populations. Our approach will leverage the
Observational Medical Outcomes Partnership (OMOP) CDM to develop tools that use standardize data formats
and naming conventions; OMOP has over 140 collaborating sites gloablly. We will further utilize analytical tools
developed by Observational Health Data Sciences and Informatics (OHDSI) on this CDM to facilitate disseminate
across the research community. Our approach will develop scalable, open source risk stratification tools for
adverse pain outcomes across diverse populations. We will accomplish this work in three aims. First, we will
develop clinical phenotypes to identify and extract key discriminating features necessary to assess postoperative
pain using EHRs. Next, we will develop pain risk stratification models using machine learning, including deep
learning, methods and tools based on phenotypes developed in Aim 1. Finally, we will validate our models
externally at the VA and disseminate our work through open source libraries and public websites. This project
will deliver validated risk-stratification tools derived from real world evidence to identify patients at high risk for
adverse pain outcomes following surgery, which can potentially reduce prescribed opioids circulating in the
community– a key to curbing the opioid epidemic.
抽象的
手术是常见的,适当的后疼痛管理至关重要,因为管理不善会损害
恢复并导致不良事件,包括长时间的阿片类药物使用和过渡到慢性疼痛。文学
建议在疼痛管理及其生活质量的影响方面存在重大分布,特别是
在弱势群体中(例如沮丧,肥胖和糖尿病患者)。但是,存在风险分层
虽然疼痛评分通常是
在电子健康记录(EHRS)中收集的,共享的算法将其用于护理改进是有限的。
为了提高现已可用的大量电子数据的有效和有效利用,这是一个常见
数据模型(CDM)是必要的:标准化结构,术语和代表EHR数据的规则。使用
用于术后疼痛研究的CMD将有助于及时在多个人群中产生证据
和设置,可以为利益相关者提供关键证据,并使领域远离痛苦治疗
对于“普通”患者进行个人的疼痛治疗。在这笔赠款中,我们提出了一种创新的方法
推进对种群术后疼痛的系统分析。我们的方法将利用
观察医学结果伙伴关系(OMOP)CDM开发使用标准化数据格式的工具
和命名惯例; OMOP在GloAbl上拥有140多个合作网站。我们将进一步利用分析工具
由观察健康数据科学和信息学(OHDSI)开发,以促进传播
在整个研究界。我们的方法将开发可扩展的开源风险分层工具
潜水员种群的不良疼痛结果。我们将以三个目标完成这项工作。首先,我们会的
开发临床表型,以识别和提取评估术后所需的关键区分特征
使用EHR疼痛。接下来,我们将使用机器学习开发疼痛风险分层模型,包括深
基于目标1中开发的表型的学习,方法和工具。最后,我们将验证我们的模型
在弗吉尼亚州外部,通过开源库和公共网站传播我们的工作。这个项目
将提供从现实世界证据得出的经过验证的风险分层工具,以识别具有高风险的患者
手术后的不良疼痛结局,这可能会减少在循环中循环的处方阿片类药物
社区 - 遏制Ooid流行病的关键。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Changes in postoperative opioid prescribing across three diverse healthcare systems, 2010-2020.
- DOI:10.3389/fdgth.2022.995497
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Coquet, Jean;Zammit, Alban;El Hajouji, Oualid;Humphreys, Keith;Asch, Steven M.;Osborne, Thomas F.;Curtin, Catherine M.;Hernandez-Boussard, Tina
- 通讯作者:Hernandez-Boussard, Tina
Opioid2MME: Standardizing opioid prescriptions to morphine milligram equivalents from electronic health records.
- DOI:10.1016/j.ijmedinf.2022.104739
- 发表时间:2022-03-16
- 期刊:
- 影响因子:4.9
- 作者:Lossio-Ventura, Juan Antonio;Song, Wenyu;Sainlaire, Michael;Dykes, Patricia C.;Hernandez-Boussard, Tina
- 通讯作者:Hernandez-Boussard, Tina
Postoperative opioid prescribing patients with diabetes: Opportunities for personalized pain management.
- DOI:10.1371/journal.pone.0287697
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
Promoting Equity In Clinical Decision Making: Dismantling Race-Based Medicine.
促进临床决策的公平:废除基于种族的医学。
- DOI:10.1377/hlthaff.2023.00545
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hernandez-Boussard,Tina;Siddique,ShaziaMehmood;Bierman,ArleneS;Hightower,Maia;Burstin,Helen
- 通讯作者:Burstin,Helen
Prescription quantity and duration predict progression from acute to chronic opioid use in opioid-naïve Medicaid patients.
处方数量和持续时间可以预测从未使用过阿片类药物的医疗补助患者从急性阿片类药物使用到慢性阿片类药物使用的进展。
- DOI:10.1371/journal.pdig.0000075
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Johnson,DrakeG;Ho,VyThuy;Hah,JenniferM;Humphreys,Keith;Carroll,Ian;Curtin,Catherine;Asch,StevenM;Hernandez-Boussard,Tina
- 通讯作者:Hernandez-Boussard,Tina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tina Hernandez-Boussard其他文献
Tina Hernandez-Boussard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tina Hernandez-Boussard', 18)}}的其他基金
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10165821 - 财政年份:2019
- 资助金额:
$ 62.05万 - 项目类别:
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10410453 - 财政年份:2019
- 资助金额:
$ 62.05万 - 项目类别:
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10019592 - 财政年份:2019
- 资助金额:
$ 62.05万 - 项目类别:
Improving Quality of postoperative pain care through innovative use of electronic health records
通过电子健康记录的创新使用提高术后疼痛护理的质量
- 批准号:
8943308 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Utilizing Electronic Health Records to Measure and Improve Prostate Cancer Care
利用电子健康记录来衡量和改善前列腺癌护理
- 批准号:
9513446 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Improving Quality of postoperative pain care through innovative use of electronic health records
通过电子健康记录的创新使用提高术后疼痛护理的质量
- 批准号:
9302313 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Utilizing Electronic Health Records to Measure and Improve Prostate Cancer Care
利用电子健康记录来衡量和改善前列腺癌护理
- 批准号:
9102039 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Utilizing Electronic Health Records to Measure and Improve Prostate Cancer Care
利用电子健康记录来衡量和改善前列腺癌护理
- 批准号:
8885448 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Prioritizing Quality Improvement in Surgery through Patient Safety Indicators.
通过患者安全指标优先提高手术质量。
- 批准号:
8454224 - 财政年份:2010
- 资助金额:
$ 62.05万 - 项目类别:
Prioritizing Quality Improvement in Surgery through Patient Safety Indicators.
通过患者安全指标优先提高手术质量。
- 批准号:
8255328 - 财政年份:2010
- 资助金额:
$ 62.05万 - 项目类别:
相似国自然基金
穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
- 批准号:82303680
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
- 批准号:82341036
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10165821 - 财政年份:2019
- 资助金额:
$ 62.05万 - 项目类别:
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10410453 - 财政年份:2019
- 资助金额:
$ 62.05万 - 项目类别:
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10019592 - 财政年份:2019
- 资助金额:
$ 62.05万 - 项目类别:
Opioid and cannabinoid combinations in laboratory and clinical pain
阿片类药物和大麻素组合在实验室和临床疼痛中的应用
- 批准号:
9479123 - 财政年份:2017
- 资助金额:
$ 62.05万 - 项目类别:
Opioid and cannabinoid combinations in laboratory and clinical pain
阿片类药物和大麻素组合在实验室和临床疼痛中的应用
- 批准号:
9686723 - 财政年份:2017
- 资助金额:
$ 62.05万 - 项目类别: