CRCNS: Neural computations underlying sequence memory consolidation in sleep
CRCNS:睡眠中序列记忆巩固的神经计算
基本信息
- 批准号:10646435
- 负责人:
- 金额:$ 35.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-10 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimalsBehaviorBehavioralBiophysical ProcessBrainChildhoodCollaborationsCommunicationComplexComputer ModelsCoupledDataData SetDevelopmentElectroencephalographyElementsEventExhibitsFoundationsGenerationsGoalsHippocampusHumanIndividualInstructionIntelligenceInterventionKnowledgeLearningMeasurementMediatingMedicineMemoryMental DepressionMental disordersMethodsModelingMotorMusNeocortexNeurobiologyNeuronsOutcomePatientsPerformancePhasePlayPost-Traumatic Stress DisordersPrincipal InvestigatorPropertyPsyche structureResearch PersonnelRetrievalRoleRunningSchizophreniaSensoryShapesSleepSlow-Wave SleepSynapsesTechniquesTestingTextureTimeTrainingTravelWeightWhole-Genome Shotgun SequencingWorkawakecognitive performancedata modelingdensityexecutive functionexperienceexperimental studyfascinateflexibilitygenetic manipulationimprovedin vivoinsightmemory consolidationneocorticalneuralneural networknoveloutcome predictionplace fieldspreservationprogramsreceptive fieldresponsesequence learningsimulationverbal
项目摘要
The ability to store and retrieve sequentially related information is arguably the foundation of intelligent
behavior. It allows us to predict the outcomes of sensory situations, to achieve goals by generating
sequences of motor actions, to 'mentally' explore the possible outcomes of different navigational or motor
choices, and ultimately to communicate through complex verbal sequences generated by flexibly chaining
simpler elemental sequences learned in childhood. Sleep extracts invariant features from the learned
information, leading to the generation of explicit knowledge and insight. Despite remarkable progress,
including work by PI and co-PI of this project, many critical questions remain about role of sleep in memory
and learning. Here we propose to address these questions through the development of computational
models that are probed and validated through in vivo experiments in mice. We will explore the hippocampal
(HC) and neocortical (NC) mechanisms underlying how sequences are acquired and subsequently
consolidated through off-line replay during Slow Wave Sleep (SWS) in a manner that minimizes
interference between overlapping and/or reversed sequences and how NC may chain sequence fragments
together. We combine computer modelling (Bazhenov) of spiking neural networks that mimic awake and
SWS brain dynamics, including NC slow oscillations and HC Sharp Wave Ripples (SWR), with high density
neural ensemble recordings (McNaughton) in mice, in a controlled behavioral setting including sequence
learning and subsequent, chemogenetically induced SWS, which makes it possible to observe how learned
sequence representations in NC evolve spontaneously over prolonged periods of SWS. The PIs have been
collaborating on and discussing this topic for the past several years, resulting in specific hypotheses that
can be explored in real brains. The project outcome will provide a better understanding of how knowledge
is extracted from experience, what brain circuits are involved and how brain dynamics are shaped by the
development of a rich internal model of the world, including the ability to predict the outcomes of current
situations and one's own actions in that context.
RELEVANCE (See instructions):
The ability to store and retrieve sequentially related information is the foundation of intelligent behavior and
brain executive function. Deficits in this ability, resulting from disruption of brain circuits, are seen in
depression, schizophrenia and PTSD. Better understanding of the mechanisms and brain dynamics
underlying the acquisition, consolidation and retrieval of sequential information will lead to interventions to
improve cognitive performance, memory and learning in healthy subjects and patients with mental illness.
存储和检索顺序相关信息的能力可以说是智能的基础
行为。它使我们能够预测感官情况的结果,以实现目标
运动动作序列,“在精神上”探索不同导航或电机的可能结果
选择,最终通过灵活链接而产生的复杂口头序列进行交流
更简单的元素序列是在童年时期学到的。睡眠摘录从学识渊博的
信息,导致产生明确的知识和见识。尽管进展显着,
包括PI的工作和该项目的Co-Pi,关于睡眠在记忆中的作用仍然存在许多关键问题
和学习。在这里,我们建议通过开发计算来解决这些问题
通过小鼠的体内实验探测和验证的模型。我们将探索海马
(HC)和新皮质(NC)机制,其序列是如何获得的,随后是序列的
通过在慢波睡眠(SWS)期间通过离线重播(SWS)以最小化的方式合并
重叠和/或反向序列之间的干扰以及NC如何链序列片段
一起。我们结合了尖峰神经网络的计算机建模(Bazhenov)
SWS脑动力学,包括NC缓慢的振荡和HC锋利波浪波(SWR),高密度
小鼠中的神经合奏记录(McNaughton),在受控行为环境中,包括序列
学习和随后的化学遗传诱导的SWS,这使您可以观察到如何学习
NC中的序列表示在长期的SWS期间自发发展。 PI一直是
在过去的几年中,协作并讨论此主题,从而提出了特定的假设
可以在真实的大脑中探索。项目结果将更好地了解知识的知识
从经验中提取,涉及哪些脑电路以及如何通过
发展世界上丰富的内部模型,包括预测当前结果的能力
在这种情况下,情况和自己的行为。
相关性(请参阅说明):
存储和检索顺序相关信息的能力是智能行为的基础和
大脑执行功能。由于脑电路的破坏而导致这种能力的缺陷在
抑郁症,精神分裂症和PTSD。更好地理解机制和大脑动力学
依据的基础,巩固和检索顺序信息将导致干预措施
改善健康受试者和精神疾病患者的认知表现,记忆力和学习。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sleep-like unsupervised replay reduces catastrophic forgetting in artificial neural networks.
- DOI:10.1038/s41467-022-34938-7
- 发表时间:2022-12-15
- 期刊:
- 影响因子:16.6
- 作者:Tadros, Timothy;Krishnan, Giri P.;Ramyaa, Ramyaa;Bazhenov, Maxim
- 通讯作者:Bazhenov, Maxim
Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation.
- DOI:10.1371/journal.pcbi.1010628
- 发表时间:2022-11
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
Neurons learn by predicting future activity.
- DOI:10.1038/s42256-021-00430-y
- 发表时间:2022-01
- 期刊:
- 影响因子:23.8
- 作者:Luczak, Artur;McNaughton, Bruce L.;Kubo, Yoshimasa
- 通讯作者:Kubo, Yoshimasa
Role of Sleep in Formation of Relational Associative Memory
睡眠在关系联想记忆形成中的作用
- DOI:10.1523/jneurosci.2044-21.2022
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tadros, Timothy;Bazhenov, Maxim
- 通讯作者:Bazhenov, Maxim
Consolidation of cellular memory representations in superficial neocortex.
- DOI:10.1016/j.isci.2023.105970
- 发表时间:2023-02-17
- 期刊:
- 影响因子:5.8
- 作者:Esteves, Ingrid M.;Chang, HaoRan;Neumann, Adam R.;McNaughton, Bruce L.
- 通讯作者:McNaughton, Bruce L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAKSIM V BAZHENOV其他文献
MAKSIM V BAZHENOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAKSIM V BAZHENOV', 18)}}的其他基金
Role of coordinated multi-area reactivations during transitions between automatic and flexible behaviors.
在自动行为和灵活行为之间转换期间协调的多区域重新激活的作用。
- 批准号:
10721280 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
CRCNS: Switching antennal lobe dynamic regime via olfactory and mechanical signal
CRCNS:通过嗅觉和机械信号切换触角叶动态状态
- 批准号:
10645219 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
CRCNS: Switching antennal lobe dynamic regime via olfactory and mechanical signal
CRCNS:通过嗅觉和机械信号切换触角叶动态状态
- 批准号:
10612145 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
CRCNS: Neural computations underlying sequence memory consolidation in sleep
CRCNS:睡眠中序列记忆巩固的神经计算
- 批准号:
10447795 - 财政年份:2020
- 资助金额:
$ 35.24万 - 项目类别:
Integrated Biophysical and Neural Model of Electrical Stimulation Effects
电刺激效应的综合生物物理和神经模型
- 批准号:
10472493 - 财政年份:2019
- 资助金额:
$ 35.24万 - 项目类别:
Integrated Biophysical and Neural Model of Electrical Stimulation Effects
电刺激效应的综合生物物理和神经模型
- 批准号:
10670301 - 财政年份:2019
- 资助金额:
$ 35.24万 - 项目类别:
Integrated Biophysical and Neural Model of Electrical Stimulation Effects
电刺激效应的综合生物物理和神经模型
- 批准号:
10217272 - 财政年份:2019
- 资助金额:
$ 35.24万 - 项目类别:
Label-free 4D optical detection of neural activity
无标记 4D 光学检测神经活动
- 批准号:
9056250 - 财政年份:2015
- 资助金额:
$ 35.24万 - 项目类别:
CRCNS: Multiple roles of inhibition in the olfactory system
CRCNS:嗅觉系统抑制的多重作用
- 批准号:
8436620 - 财政年份:2012
- 资助金额:
$ 35.24万 - 项目类别:
CRCNS: Multiple roles of inhibition in the olfactory system
CRCNS:嗅觉系统抑制的多重作用
- 批准号:
8856198 - 财政年份:2012
- 资助金额:
$ 35.24万 - 项目类别:
相似国自然基金
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
稳健深度神经网络的误差分析及其在动物行为学领域的应用
- 批准号:12301651
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植物甾醇颗粒和凝胶粒子构建双相乳液凝胶模拟动物脂肪组织弹塑性行为和感官特性的分子机制研究
- 批准号:32272243
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
群居灵长类动物对人类干扰的行为响应和适应机制研究——以四川白河国家级自然保护区川金丝猴为例
- 批准号:32270548
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
群居灵长类动物对人类干扰的行为响应和适应机制研究——以四川白河国家级自然保护区川金丝猴为例
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 35.24万 - 项目类别:
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
- 批准号:
10655943 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Hippocampal interactions with striatal subnetworks for reward prediction and evaluation
海马与纹状体子网络的相互作用用于奖励预测和评估
- 批准号:
10659974 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别: