Statistical methods for identifying pleiotropy between complex human traits
识别复杂人类特征之间多效性的统计方法
基本信息
- 批准号:10646535
- 负责人:
- 金额:$ 24.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-23 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAreaAutoimmuneBenchmarkingBiologicalBiologyCalibrationCase/Control StudiesCollaborationsCommunitiesComplexComputer softwareCoronary ArteriosclerosisCraniofacial AbnormalitiesCrohn&aposs diseaseDataData SetDetectionDevelopmentDiagnosisDiseaseEnsureEtiologyEvaluationFamilyFrequenciesGene FrequencyGeneticGenetic Predisposition to DiseaseGenetic ResearchGenetic VariationGenomicsGenotypeHealthHumanHuman GenomeIndividualInterventionInvestigationKnowledgeMale Pattern BaldnessMalignant NeoplasmsMalignant neoplasm of prostateMathematicsMeasuresMethodologyMethodsModelingMolecularMolecular TargetNon-Insulin-Dependent Diabetes MellitusNormalcyParentsParkinson DiseasePatternPhenotypePopulationPublic Health Applications ResearchResearchResearch DesignResearch PersonnelResource-limited settingRiskRisk FactorsSample SizeSamplingSignal TransductionSpan 60Statistical DistributionsStatistical MethodsTestingTherapeuticTonsillectomyUlcerative ColitisVariantcase controldesigndrug developmentearly onsetendophenotypegenetic architecturegenetic testinggenetic variantgenome wide association studygenome-widehuman diseasehuman subject protectioninnovationlarge scale simulationnovelopen sourcepleiotropismrare variantside effectstatisticstheoriestooltraittranslational impactuser friendly softwareuser-friendly
项目摘要
PROJECT SUMMARY
Years of genetic research on various complex human traits have implicated several genetic
variants as risk factors for two or more diseases/traits, including seemingly unrelated traits. A
recent systematic evaluation of >500 traits from >4100 genome-wide association studies (GWAS)
has revealed that 90% of the variants associated with these traits influence at least two traits.
This phenomenon where a genetic region or locus confers risk to more than one trait is known as
pleiotropy. Discovering patterns of pleiotropy is crucial for a comprehensive understanding of
biological mechanisms of human diseases and traits (e.g. understand how genetic variation leads
to trait variation and inter-trait correlations, and how traits may be causally related to each other),
and can have translational impact in the long run (e.g. guide identification of molecular targets or
help predict side-effects in drug development). While the scientific significance of studying
pleiotropy or genetic overlap is well-understood, statistical methods for identifying common
genetic basis between traits are still lacking. This is especially true for traits sampled under a
family-based design. To address methodological challenges in investigating pleiotropy, in Aim 1,
we propose a novel, innovative statistical method for identifying common genetic variants
influencing two possibly correlated traits. In Aim 2, we non-trivially extend our method in Aim 1 to
identify rare genetic variants influencing two independent traits. We use only aggregate-level
genotype-phenotype association results (or GWAS summary statistics), thus helping protect
human subjects data and facilitating global collaborations. The proposed methods, while having
the potential to substantially outperform current approaches in the area, will be more general and
distinct from existing research efforts in the following ways: applicability to correlated traits (Aim
1; e.g. a disease-related endophenotype and a molecular trait, or two different -omics traits), to
traits measured on independent sets of individuals (Aims 1, 2; e.g. separate case-control studies
on two diseases), to traits sharing some samples (Aim 1; e.g. case-control studies with shared
controls), to study designs where individuals may not be randomly sampled or unrelated (Aims
1, 2; e.g. case-parent trio design), to rare variants (Aim 2), and our open-access tools will allow
genomics researchers across the world to readily adopt and apply our methods even in resource-
poor environments (Aims 1, 2). Successful implementation of these aims will provide the broader
scientific community with novel, powerful and scalable methods, along with well-documented free
software, to statistically investigate questions of pleiotropy between complex human diseases/
traits across the entire allele frequency spectrum using GWAS summary statistics only.
项目摘要
多年对各种复杂人类特征的遗传研究已牵涉到几种遗传
变体是两种或多种疾病/特征的风险因素,包括看似无关的特征。一个
最近对> 4100个全基因组关联研究(GWAS)的500个特征的系统评估(GWAS)
已经揭示了与这些特征相关的90%的变体至少影响两个特征。
遗传区域或基因座的这种现象赋予了多个特征的风险
多效性。发现多效性的模式对于全面理解
人类疾病和特征的生物学机制(例如,了解遗传变异如何引导
特征变化和特征相关性,以及特征如何彼此之间的因果关系),
从长远来看可以产生翻译影响(例如,指导分子靶标或
有助于预测药物开发中的副作用)。而研究的科学意义
多效性或遗传重叠是识别常见的统计方法的良好理解
仍缺乏特征之间的遗传基础。对于在A下采样的特征尤其如此
基于家庭的设计。在AIM 1中,解决多效性的方法论挑战,
我们提出了一种新颖的创新统计方法,用于识别常见的遗传变异
影响两个可能相关的特征。在AIM 2中,我们非试图将我们的方法扩展到AIM 1中
确定影响两个独立特征的稀有遗传变异。我们仅使用聚合级别
基因型 - 表型关联结果(或GWAS摘要统计),因此有助于保护
人类受试者数据并促进全球合作。提出的方法,同时
在该地区实质上胜过当前方法的潜力将更加一般,并且
与现有研究工作不同的方式不同:适用于相关特征(目标
1;例如与疾病相关的内表型和一个分子性状,或两个不同的特征)
在独立的个体集中测量的特征(目标1,2;例如单独的病例对照研究
关于两种疾病),要共享一些样本的特征(AIM 1;例如,病例对照研究,共享
对照),研究可能不会随机采样或无关的个人的设计(目的
1,2;例如案例三重奏设计),对于罕见的变体(AIM 2),我们的开放访问工具将允许
世界各地的基因组学研究人员即使在资源中也很容易采用和应用我们的方法
环境差(目标1、2)。这些目标的成功实施将为广泛提供
具有新颖,有力和可扩展方法的科学界以及有据可查的免费
软件,以统计研究复杂人类疾病之间的多效性问题/
仅使用GWAS摘要统计数据,整个等位基因频谱的特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debashree Ray其他文献
Debashree Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debashree Ray', 18)}}的其他基金
Methods for leveraging family-based designs and summary data to elucidate complex trait genetics
利用基于家族的设计和汇总数据来阐明复杂性状遗传学的方法
- 批准号:
10713748 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Multi-trait genome-wide characterization of non-traditional glycemic biomarkers and type 2 diabetes
非传统血糖生物标志物和 2 型糖尿病的多特征全基因组表征
- 批准号:
10358608 - 财政年份:2021
- 资助金额:
$ 24.56万 - 项目类别:
Multi-trait genome-wide characterization of non-traditional glycemic biomarkers and type 2 diabetes
非传统血糖生物标志物和 2 型糖尿病的多特征全基因组表征
- 批准号:
10215925 - 财政年份:2021
- 资助金额:
$ 24.56万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
Equipping social workers on the front line: The child welfare and addiction specialist fellowship program
为前线的社会工作者提供装备:儿童福利和成瘾专家奖学金计划
- 批准号:
10682109 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Implementation and Implications of Sickle Cell Trait Screening in the NCAA
镰状细胞性状筛查在 NCAA 中的实施及其意义
- 批准号:
10842764 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别: