Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
基本信息
- 批准号:10643695
- 负责人:
- 金额:$ 17.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdmission activityAmeliaAreaAwardBiological MarkersCalibrationCaringClinicalClinical DataClinical TrialsClinical stratificationCommunicationCritical IllnessDataDecision MakingDeliriumDevelopmentDevelopment PlansDiscriminationElementsEngineeringEnrollmentEnvironmentFamilyFunctional disorderFundingGlasgow Outcome ScaleGlial Fibrillary Acidic ProteinGoalsGrantHospitalizationHospitalsHourImageImpaired cognitionImpairmentInjuryInpatientsInstitute of Medicine (U.S.)K-Series Research Career ProgramsKnowledgeLaboratoriesLeadershipLogistic RegressionsLong-Term EffectsLongterm Follow-upMRI ScansMedicineMentorsMentorshipModelingMultiple TraumaNervous System PhysiologyNeurocognitiveNeurologicNeuronal PlasticityOrganOutcomePatient CarePatient SelectionPatientsPatternPersonsPositioning AttributePredictive FactorPrincipal InvestigatorProviderPublic HealthRecoveryRecovery of FunctionReportingResearchResearch PriorityScientistSignal TransductionStatistical ModelsStratificationSubgroupSurgeonSurvivorsTBI PatientsTBI treatmentTestingTimeTrainingTranslatingTraumaTraumatic Brain InjuryTraumatic Brain Injury recoveryUCHL1 geneUnited States National Academy of SciencesUnited States National Institutes of HealthUpdateWorkX-Ray Computed Tomographybrain dysfunctioncareer developmentclinical careclinical decision-makingclinical imagingclinical translationcognitive recoverycohortexpectationexperiencefollow-upfunctional outcomesimaging biomarkerimprovedindividual patientmodel developmentmultidisciplinaryneuroimagingnovelpatient orientedpatient responsibilitiespredictive modelingprognosticprognostic modelprognosticationradiomicsresiliencerisk predictionsevere injuryskillsspecific biomarkerssurvivorshipsymposium
项目摘要
PROJECT SUMMARY/ABSTRACT
Despite more than 5 million people living in the U.S. with the long-term effects of traumatic brain injury
(TBI), it remains unknown at what point the TBI functional recovery trajectory is fixed. Existing TBI prognostic
models are imperfect and static, relying on data from admission and the first 6 hours only. Current models
explain only one-third of the variability in outcomes. Despite the multiple CT and MRI scans obtained in TBI
clinical care, neuroimaging remains underutilized for TBI prognostics. Image-based biomarkers and radiomics
can extract predictive signals from neuroimaging already being obtained. Prognostication matters: better
prognostics translate to better patient-centered clinical decision making and better prognostic stratification for
clinical trials. Multiple TBI therapies have failed in clinical translation due to basic challenges in patient
selection and predicting TBI recovery. At many hospitals across the U.S., trauma surgeons are the primary
providers responsible for patients with hospitalized TBI. We can and should do better by developing a mature
quantitative approach to prognostication that incorporates time-varying clinical data, advanced statistical
modeling, TBI-specific biomarkers, and image-based biomarkers from clinical imaging already being obtained.
This career development plan (PI: Amelia W. Maiga, Trauma Surgeon) helps sustain a minimum of 75%
protected effort to hone her research expertise and eventual independence in advanced statistical modeling,
clinical trials, and neuroimaging analysis for TBI prognostication. The research specific aims are to: AIM 1)
build and validate a TBI prognostic model for 12-month functional outcomes with rich time-varying clinical data,
radiomics imaging analysis, and biomarkers using two NIH cohorts (R01GM120484 and U01NS086090); and AIM
2) conduct a trajectory analysis of long-term functional and neurocognitive outcomes after TBI.
This career development plan for Dr. Maiga integrates a) advanced didactics in clinical trials and
neurocognitive follow-up in the critically injured, sophisticated statistical modeling, imaging analysis, and
scientific communication and leadership; b) participation in local, regional, and national conferences to
advance expertise in the above areas; c) a multidisciplinary mentored research experience; and d) an
outstanding environment to propel towards independence. Her mentorship team consists of Drs. Mayur B.
Patel (Primary Mentor, trauma, critical illness and TBI); Pratik P. Pandharipande (cognitive impairment);
Rameela Raman (prognostic modeling, trajectory analysis); James C. Jackson (long-term outcomes); and
Bennett A. Landman (neuroimaging, radiomics), supported by a Research Advisory Council of Drs. E. Wesley
Ely (Director of Critical Illness and Brain Dysfunction Center); Robert S. Dittus (Director of Vanderbilt’s Institute
of Medicine and Public Health); Geoff T. Manley (PI TRACK-TBI; Transforming Research and Clinical
Knowledge in TBI). This research award will position Dr. Maiga to become a leader in TBI prognostics.
项目摘要/摘要
尽管有超过500万人居住在美国的长期影响脑损伤
(TBI),TBI功能恢复轨迹固定在什么时候仍然未知。现有的TBI预后
模型是不完美和静态的,仅依赖于入院和最初6个小时的数据。当前模型
仅解释结果的变异性的三分之一。尽管在TBI中获得了多次CT和MRI扫描
临床护理,神经影像学仍然不足用于TBI探针。基于图像的生物标志物和放射线学
可以从已经获得的神经影像中提取预测信号。预后问题:更好
预后可以转化为以患者为中心的临床决策更好的预后和更好的预后分层
临床试验。由于患者的基本挑战,多种TBI疗法的临床翻译失败
选择并预测TBI恢复。在美国的许多医院,创伤外科医生是主要的
负责住院TBI患者的提供者。我们可以而且应该通过发展成熟来做得更好
定量方法提示包含时变临床数据,高级统计数据
从已经获得的临床成像中的建模,TBI特异性生物标志物和基于图像的生物标志物。
这项职业发展计划(PI:Amelia W. Maiga,创伤外科医生)有助于维持至少75%
保护她的研究专家和最终在高级统计建模中的独立性的努力,
用于TBI提示的临床试验和神经影像学分析。研究的特定目的是:目标1)
构建和验证TBI预后模型,以使用丰富的时变临床数据的12个月功能结果,
放射成像分析和使用两个NIH队列(R01GM120484和U01NS086090)的生物标志物;和目标
2)对TBI后的长期功能和神经认知结果进行轨迹分析。
Maiga博士的这项职业发展计划将a)临床试验中的高级教学术和
严重受伤,复杂的统计建模,成像分析和
科学沟通和领导; b)参加地方,地区和民族会议
提高上述领域的专业知识; c)多学科的修订研究经验; d)
杰出的环境推动独立。她的训练团队由Drs组成。 Mayur B.
帕特尔(主要导师,创伤,危重疾病和TBI); Pratik P. Pandharapande(认知障碍);
Rameela Raman(预后建模,轨迹分析);詹姆斯·杰克逊(James C. Jackson)(长期成果);和
贝内特·A·兰德曼(Bennett A. E. Wesley
Ely(严重疾病和大脑功能障碍中心主任); Robert S. Dittus(范德比尔特学院的主任
医学和公共卫生); Geoff T. Manley(Pi Track-Tbi;转型研究和临床
TBI的知识)。该研究奖将使Maiga博士成为TBI探针的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amelia Maiga其他文献
Amelia Maiga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 17.46万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 17.46万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 17.46万 - 项目类别:
Development of Patient-Tailored Adaptive Treatment Strategies for Acute Severe Ulcerative Colitis
制定针对急性重症溃疡性结肠炎的患者定制适应性治疗策略
- 批准号:
10569397 - 财政年份:2023
- 资助金额:
$ 17.46万 - 项目类别:
Impact of Medicare Polices on Beneficiaries with ADRD
医疗保险政策对 ADRD 受益人的影响
- 批准号:
10728582 - 财政年份:2023
- 资助金额:
$ 17.46万 - 项目类别: