Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
基本信息
- 批准号:10652012
- 负责人:
- 金额:$ 24.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:African AmericanAgeAlzheimer&aposs DiseaseAreaArtificial IntelligenceCaregiversCaringCause of DeathCommunitiesComputer softwareDatabasesDecision MakingDimensionsDiseaseElderlyElectronic Health RecordEthicsEthnic OriginFamilyGoalsInstructionInterventionMinorityMinority GroupsModelingOutcomePalliative CarePatientsPersonal SatisfactionPersonsPopulationProcessProviderQuality of CareRaceRacial EquityRegimenResourcesSlideTechnologyTechnology TransferTherapeuticTimeTrainingVariantadvanced analyticsage groupanalytical toolaugmented intelligencebasecare deliverycare systemscohortdigitalend of lifehealth care deliveryhealth care service utilizationhealth planimprovedpatient populationpopulation basedpopulation healthpredictive modelingpreferencepsychosocialresilienceservice deliverytechnology developmenttool
项目摘要
Abstract: Palliative care (PC) is an interdisciplinary concept aimed at improving the wellbeing of
persons with serious illness throughout their course of illness including end-of-life. PC enables
care decisions that align with patient and caregiver preferences. For persons with Alzheimer’s
Disease and Related Disorders (ADRD), PC is particularly challenging, as determining a patient’s
current status on the ADRD disease course is often difficult. Successful PC services in patients
with ADRD focuses on integrating therapeutic regimens with timely identification and alleviation
of physical, psychosocial, and decision-making needs of patients and their families. PC can
promote ethical, equitable, and efficient population health principles by achieving optimal
healthcare utilization by avoiding overuse and underuse. Many challenges hinder appropriate
levels of PC integration for persons with ADRD at both the patient- and population-levels. There
is ongoing discussion on optimal timing of PC delivery in addition to variation in availability of
well-trained teams and resources to deliver PC. One ubiquitous challenge is the care system’s
ability to identify those persons that will benefit most from PC. Moreover, there are documented
disparities in delivery of PC, such that minority race/ethnicity patients receive too little, too late
care compared to their majority counterparts. Artificial intelligence (AI) predictive modeling
techniques may enable accurate and timely identification of persons with ADRD who are likely to
benefit from PC assessment. To achieve our goal of using advanced AI analytic tools to improve
PC received by persons with ADRD, the project has the following objectives:1) To develop and
validate advanced predictive models (PM) to identify persons with ADRD who are likely to benefit
from PC assessment; 2) To evaluate the impact of PM based palliative care interventions on
population-level healthcare utilization outcomes; 3) To assess the disparities in PC services
delivery and healthcare utilization in African American and other minority populations with
ADRD; 4) To initiate first stage of technology transfer of the advanced analytic tools we develop
by undertaking initial pilots and developing both publicly accessible software and integration into
the JHU “ACG” population-based platform. Dr. Chintan Pandya (PI) and team will develop
machine learning prediction models to identify ADRD patients likely to benefit from PC
assessment. These models will be developed using data captured in electronic health record (EHR)
and other large electronic databases (e.g., insurance claims) of patients with ADRD cared for
within a large patient/consumer population. In addition to sharing open architecture free-access
tools at the conclusion of this project, we plan on integrating the software-based algorithms we
develop into our widely used (reaching 250+ million patients in 20+ nations) Johns Hopkins ACG
predictive modeling and disease stratification software. This will allow for rapid diffusion of new
palliative care analytic technologies among a very large U.S. and global healthcare organizations
client base. At the patient level, our ADRD PC decision support framework will promote
interactive goals of care discussions between patients/caregivers and providers. The populationbased analytic tools we develop will help promote resource planning, quality, and equity
assessment among ADRD cohorts within health delivery systems, health plans, and communities.
摘要:姑息治疗(PC)是一个跨学科概念,旨在改善
在整个疾病过程中患有严重疾病的人,包括生命终结。 PC启用
与患者和护理人员偏好保持一致的护理决定。适用于阿尔茨海默氏症的人
疾病和相关疾病(ADRD),PC特别具有挑战性,因为确定患者的
ADRD疾病病程的现状通常很困难。患者成功的PC服务
ADRD专注于将治疗方案与及时识别和缓解融合
患者及其家人的身体,社会心理和决策需求。 PC可以
通过实现最佳
通过避免过度使用和不足来利用医疗保健。许多挑战阻碍了适当的
患者和人口水平的ADRD患者的PC集成水平。那里
除了可用性的差异外,还在讨论PC交付的最佳时机
训练有素的团队和提供PC的资源。一个无处不在的挑战是护理系统的
能够识别那些将从PC中受益最大的人。此外,有记录
PC交付的差异,使得少数族裔/民族患者收到的差异太少,太晚了
与他们的多数同行相比。人工智能(AI)预测建模
技术可能可以使ADRD的人准确,及时地识别
来自PC评估的好处。为了实现我们使用先进的AI分析工具改进的目标
ADRD人员收到的PC,该项目具有以下对象:1)开发和
验证先进的预测模型(PM),以识别有可能受益的ADRD的人
来自PC评估; 2)评估基于PM的姑息治疗干预措施对
人口水平的医疗保健利用结果; 3)评估PC服务中的分布
非裔美国人和其他少数民族的交付和医疗保健利用
adrd; 4)启动我们开发的高级分析工具的技术转移的第一阶段
通过进行初始飞行员并开发公共访问的软件并集成到
JHU“ ACG”基于人口的平台。 Chintan Pandya博士(PI)和团队将发展
机器学习预测模型以识别可能从PC中受益的ADRD患者
评估。这些模型将使用电子健康记录(EHR)中捕获的数据开发
以及其他大型电子数据库(例如,ADRD护理患者的保险索赔)
在大型患者/消费者人群中。除了共享开放式建筑免费访问
该项目结束时的工具,我们计划整合基于软件的算法
发展到我们广泛使用的(在20多个国家中达到25万多名患者)Johns Hopkins ACG
预测建模和疾病分层软件。这将允许快速扩散新的
美国和全球医疗保健组织中的姑息治疗分析技术
客户群。在患者一级,我们的ADRD PC决策支持框架将促进
患者/看护者和提供者之间护理讨论的互动目标。我们开发的基于人群的分析工具将有助于促进资源计划,质量和权益
在健康分娩系统,健康计划和社区中的ADRD队列之间的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter M. Abadir其他文献
Usability and acceptance as facilitators of behavioral intention to use a mixed reality exercise program in older adults: A structural equation model
作为老年人使用混合现实锻炼计划的行为意图促进者的可用性和接受度:结构方程模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.9
- 作者:
Michael Joseph S. Dino;Kenneth W. Dion;Peter M. Abadir;C. Budhathoki;Chien;Irvin Ong;Patrick Tracy Balbin;Cheryl R. Dennison Himmelfarb;Patricia M. Davidson - 通讯作者:
Patricia M. Davidson
What drives older adults’ acceptance of virtual humans? A conjoint and latent class analysis on virtual exercise coach attributes for a community-based exercise program
- DOI:
10.1016/j.chb.2024.108507 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Michael Joseph S. Dino;Kenneth W. Dion;Peter M. Abadir;Chakra Budhathoki;Chien-Ming Huang;William V. Padula;Irvin Ong;Cheryl R. Dennison Himmelfarb;Patricia M. Davidson;Ladda Thiamwong - 通讯作者:
Ladda Thiamwong
Peter M. Abadir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter M. Abadir', 18)}}的其他基金
Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
- 批准号:
10652020 - 财政年份:2021
- 资助金额:
$ 24.11万 - 项目类别:
Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
- 批准号:
10652093 - 财政年份:2021
- 资助金额:
$ 24.11万 - 项目类别:
Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
- 批准号:
10491893 - 财政年份:2021
- 资助金额:
$ 24.11万 - 项目类别:
Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
- 批准号:
10652011 - 财政年份:2021
- 资助金额:
$ 24.11万 - 项目类别:
Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
- 批准号:
10274370 - 财政年份:2021
- 资助金额:
$ 24.11万 - 项目类别:
Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
- 批准号:
10652026 - 财政年份:2021
- 资助金额:
$ 24.11万 - 项目类别:
Utilizing Technology and AI Approaches to Facilitate Independence and Resilience in Older Adults
利用技术和人工智能方法促进老年人的独立性和适应能力
- 批准号:
10678969 - 财政年份:2021
- 资助金额:
$ 24.11万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Hospice exposure and utilization among older African Americans with ADRD and their decisional support persons
患有 ADRD 的老年非洲裔美国人及其决策支持人员的临终关怀暴露和利用
- 批准号:
10679558 - 财政年份:2023
- 资助金额:
$ 24.11万 - 项目类别:
The Role of Lipids in Alzheimer's Disease and Related Dementias among Black Americans: Examining Lifecouse Mechanisms
脂质在美国黑人阿尔茨海默病和相关痴呆中的作用:检查生命机制
- 批准号:
10643344 - 财政年份:2023
- 资助金额:
$ 24.11万 - 项目类别:
Measuring the Impact of the Value Flower and Unobserved Heterogeneity on the Cost Effectiveness and Use of Novel Treatments for Alzheimer's Disease and Related Dementias
衡量价值花和未观察到的异质性对阿尔茨海默病和相关痴呆症新疗法的成本效益和使用的影响
- 批准号:
10658457 - 财政年份:2023
- 资助金额:
$ 24.11万 - 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 24.11万 - 项目类别:
Interactions of SARS-CoV-2 infection and genetic variation on the risk of cognitive decline and Alzheimer’s disease in Ancestral and Admixed Populations
SARS-CoV-2 感染和遗传变异的相互作用对祖先和混血人群认知能力下降和阿尔茨海默病风险的影响
- 批准号:
10628505 - 财政年份:2023
- 资助金额:
$ 24.11万 - 项目类别: