Situation Awareness to Improve Infant Sepsis Recognition in the Presence of Clinical Uncertainty
在存在临床不确定性的情况下提高对婴儿脓毒症的识别能力
基本信息
- 批准号:10641794
- 负责人:
- 金额:$ 36.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibioticsAwarenessBacteremiaBenchmarkingCaringChildhoodClinicalClinical DataClinical InformaticsClinical TrialsComplexComprehensionConsensusCritical IllnessDataData DisplayData ScienceDecision MakingDecision Support SystemsDevelopmentDevicesDiagnosisDisciplineEarly DiagnosisEducationEffectivenessElectronic Health RecordEngineeringEnsureEnvironmentEvaluationEvaluation MethodologyFoundationsFutureGlobal AwarenessGoalsHealthHealthcareHospitalizationHourHumanInfantInfant MortalityInfectious Diseases ResearchInformation SystemsInterventionKnowledgeLaboratoriesMachine LearningMeasuresMedicalMedical centerMethodsModelingMonitorMorbidity - disease rateNeonatal Intensive Care UnitsNeonatal MortalityNeonatologyNursesOutcomeOutputPatientsPediatric HospitalsPhiladelphiaPhysiciansPopulationPositioning AttributePreventionProcessRecommendationRegistriesResearchResearch PersonnelResourcesRiskSafetySepsisSiteSurvivorsSystemTechniquesTestingTrainingUncertaintyUnited States National Library of MedicineWorkage groupantimicrobialclinical careclinical implementationcomorbiditydata modelingdiagnostic strategyeffectiveness measureexperienceexperimental studyhealth information technologyhigh riskhigh risk infantimprovedimproved outcomeinfant infectioninfant morbidity/mortalityinfant outcomeinnovationmortalitymultidisciplinaryneonatal sepsisnovelpredictive modelingprototyperapid diagnosisrisk prediction modelsimulationsupport toolstreatment and outcomeusabilityuser centered designweb services
项目摘要
PROJECT SUMMARY
Sepsis has higher mortality in infants than other pediatric age groups, is associated with severe long-
term morbidities in 30-50% of survivors, and burdens healthcare resources with prolonged
hospitalization and complex interventions. Rapid identification of sepsis and timely initiation of
antimicrobial therapy are critical to improve infant outcomes. However, limitations to current diagnostic
approaches include the heterogeneous, subtle clinical presentation of infants and limited accuracy of
laboratory tests. There is therefore an urgent need for strategies to improve the early detection of sepsis
in infants to improve outcomes. Our objective is to improve sepsis recognition by developing an infant
sepsis early recognition system that combines patient data with predictive model outputs to deliver
timely, precise and relevant information to clinicians and nurses. Our hypothesis is that the integration of
a predictive model with clinical data displays that improve situation awareness will improve timely sepsis
recognition and management. We will utilize the strong foundation of our preliminary work in predictive
modeling and existing data from our neonatal sepsis registry to produce novel methods to identify infants
at greatest risk for neonatal sepsis. We have assembled a multi-disciplinary team of investigators from
the disciplines of data science, clinical informatics, neonatology, and sepsis/infectious disease research
to provide expert consensus recommendations. At the conclusion of the proposed work, we will have
developed methods that support the integration of clinical data and machine learning outputs into
decision support tools suited to clinical workflows. We anticipate such systems that pair advanced
prediction methods with user-centered design processes will have broad applicability to many conditions
and populations. This work will form the foundation for a future clinical trial to evaluate its ability to
identify infants at highest risk of sepsis and provide clinicians and nurses with the decision support
needed to improve their health and safety.
项目摘要
脓毒症的婴儿的死亡率比其他小儿年龄组高,与严重的长期有关
30-50%的幸存者的期限病毒和延长的医疗保健资源负担负担
住院和复杂的干预措施。快速鉴定败血症和及时开始
抗菌治疗对于改善婴儿预后至关重要。但是,当前诊断的局限性
方法包括婴儿的异质,微妙的临床表现和有限的精度
实验室测试。因此,迫切需要策略来改善败血症的早期检测
在婴儿中改善预后。我们的目标是通过发展婴儿来改善败血症的识别
败血症的早期识别系统将患者数据与预测模型输出相结合以交付
及时向临床医生和护士的及时,准确和相关的信息。我们的假设是集成
具有临床数据显示的预测模型,以提高状况意识,将改善及时的败血症
认可和管理。我们将在预测中利用我们的初步工作的强大基础
来自新生儿败血症注册表的建模和现有数据,以产生新方法来识别婴儿
新生儿败血症的风险最大。我们已经组建了一个来自
数据科学,临床信息学,新生儿学和败血症/传染病研究的学科
提供专家共识建议。在拟议的工作结束时,我们将拥有
开发的方法支持临床数据和机器学习输出的整合到
决策支持工具适合临床工作流程。我们预计这样的系统将配对
以用户为中心的设计过程的预测方法将在许多情况下具有广泛的适用性
和人口。这项工作将构成未来临床试验的基础,以评估其能力
确定败血症风险最高的婴儿,并为临床医生和护士提供决策支持
需要改善其健康和安全。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert W Grundmeier其他文献
Robert W Grundmeier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert W Grundmeier', 18)}}的其他基金
Situation Awareness to Improve Infant Sepsis Recognition in the Presence of Clinical Uncertainty
在存在临床不确定性的情况下提高对婴儿脓毒症的识别能力
- 批准号:
10296851 - 财政年份:2021
- 资助金额:
$ 36.91万 - 项目类别:
Situation Awareness to Improve Infant Sepsis Recognition in the Presence of Clinical Uncertainty
在存在临床不确定性的情况下提高对婴儿脓毒症的识别能力
- 批准号:
10449396 - 财政年份:2021
- 资助金额:
$ 36.91万 - 项目类别:
Comprehensive Clinical Decision Support for the Primary Care of Premature Infants
早产儿初级保健的综合临床决策支持
- 批准号:
7825848 - 财政年份:2010
- 资助金额:
$ 36.91万 - 项目类别:
相似国自然基金
结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
- 批准号:32302247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
- 批准号:42377036
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
微藻-细菌协同降解抗生素及其共适应机制
- 批准号:42377367
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implicit racial bias in pediatric emergency medicine: A foundational investigation of physician behaviors
儿科急诊医学中的隐性种族偏见:对医生行为的基础调查
- 批准号:
10722681 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
- 批准号:
10699457 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
Using strain history to improve prediction of the evolution of antimicrobial resistance in Acinetobacter baumannii
利用菌株历史改进对鲍曼不动杆菌抗菌药物耐药性演变的预测
- 批准号:
10677362 - 财政年份:2023
- 资助金额:
$ 36.91万 - 项目类别:
Mitigating Structural Racism to Reduce Inequities in Sepsis Outcomes
减轻结构性种族主义以减少败血症结果的不平等
- 批准号:
10474773 - 财政年份:2022
- 资助金额:
$ 36.91万 - 项目类别:
Pathogenicity of the emerging pathogen Kingella kingae
新出现的病原体金氏菌的致病性
- 批准号:
10559927 - 财政年份:2022
- 资助金额:
$ 36.91万 - 项目类别: