Mechanogenomics of the asthmatic airway epithelium
哮喘气道上皮的机械基因组学
基本信息
- 批准号:10642317
- 负责人:
- 金额:$ 18.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAsthmaAwardBasal CellBindingBiologicalBiomechanicsBiometryBiophysicsBronchial SpasmBronchoconstrictionCell CommunicationCellsChronicClinicalClinical DataCoagulation ProcessCollagenComplexComputational BiologyConfusionDataDepositionDevelopmentDiseaseEnvironmentEpithelial CellsEpitheliumEventExtracellular MatrixFutureGeneticGenetic TranscriptionGenomicsGoalsGoblet CellsGrantHeterogeneityHumanImmune responseIn VitroInflammationInflammatoryLinkMechanical StressMechanicsMediatingMedicineMentorsModelingModernizationMolecularMorphologyMuscle ContractionNaturePathogenesisPathogenicityPathologicPathologic ProcessesPathway interactionsPatientsPatternPhenotypePhysicsPopulation StudyPositioning AttributeProcessProliferatingProteinsPulmonologyQualifyingResearchResearch PersonnelResourcesRoleRouteScienceScientistSignal PathwayStimulusSystems BiologyTestingTherapeuticTissuesTrainingairway epitheliumairway goblet cell hyperplasiaairway inflammationairway remodelingasthmaticasthmatic airwaybronchial epitheliumcandidate identificationcareercell typeepithelial to mesenchymal transitionexperienceexperimental studygenome-widein vivoinnovationmechanical forcemechanotransductionmigrationmolecular targeted therapiesnetwork modelsnovelpressurepreventprogramsrepairedrespiratory smooth muscleresponsesingle-cell RNA sequencingskillstargeted treatmenttherapeutic biomarkertherapeutic candidatetherapeutic targettraittranscriptome sequencingtranslational impactvolunteerwound healing
项目摘要
Summary/Abstract
Airway wall remodeling is one of the most documented hallmarks of asthma. Despite being a key clinical trait of
long-term asthma, this pathological condition remains largely uncontrolled even with front-line therapies.
Remodeling processes have been traditionally described as an aberrant response to chronic inflammation.
However, this picture is challenged by increasing evidence of airway remodeling as a primary
mechanotransduction event. Recent studies point to mechanical abnormalities in the airway epithelium as a core
factor of asthma pathogenesis. In vitro and in vivo experiments show that the mechanical effects of asthmatic
bronchoconstriction can trigger alone genomic, molecular, and morphological patterns of airway remodeling even
in the absence of inflammatory stimuli. As such, the traditional picture of asthma as a predominantly inflammatory
disease is giving way to a complex, multifactorial scenario where mechanical forces, immune response, and
tissue remodeling all contribute to the development of the disease. Building upon these findings, this proposal
hypothesizes that the mechanogenetic response of the airway epithelium to excessive mechanical stress
constitutes a route to aberrant airway remodeling that is independent of inflammation. To test this
hypothesis, Dr. De Marzio will develop a novel systems biology approach that combines genomics, biostatistics,
and network medicine. RNA-Sequencing and clinical data from asthma population studies will be integrated with
protein interaction networks to: 1) Identify the mechanogenetic signature of bronchoconstriction in the asthmatic
epithelium and understand its role on asthmatic phenotypes; 2) define the role of airway epithelial cell
heterogeneity in response to mechanical compression; and 3) determine the signaling pathways mediating
compression-induced airway remodeling to discover candidate therapeutic markers. In doing so, this project will
represent the first comprehensive study on the mechanogenomics of asthma. The intrinsic interdisciplinary
nature of this proposal makes Dr. De Marzio uniquely qualified to pursue this research direction. The proposed
research will leverage her physics background and her experience in computational biology and network
modeling to understand the pathogenic role of mechanical forces in asthma. For the successful development of
this project, she will receive additional training in airway pathobiology and pulmonary medicine and she will be
supported by an outstanding mentoring team composed of biologists, network scientists, and pulmonologists.
Dr. De Marzio's long-term career goal is to establish an independent research program at the intersection of
genomics, biomechanics, and network science. The resources offered by this award combined with the rich
intellectual environment of the Channing Division of Network Medicine will put her in an advantageous position
to transition to independence and submit multiple R01s. Dr. De Marzio's findings will pave the way for the future
development of a mechanomedicine of asthma.
摘要/摘要
气道墙改造是哮喘最有记录的标志之一。尽管是关键的临床特征
长期哮喘,即使有一线疗法,这种病理状况仍然在很大程度上无法控制。
传统上,重塑过程被描述为对慢性炎症的异常反应。
但是,通过越来越多的呼吸道重塑作为主要的证据来挑战这张照片
机械传输事件。最近的研究表明,气道上皮的机械异常是核心
哮喘发病机理的因素。体外和体内实验表明哮喘的机械作用
支气管收缩可以触发气道重塑的基因组,分子和形态学模式
在没有炎症刺激的情况下。因此,哮喘的传统图片主要是炎症
疾病让位于复杂的多因素场景,机械力,免疫反应和
组织重塑都有助于疾病的发展。在这些发现的基础上,该提议
假设气道上皮对过度机械应力的机械遗传响应
构成了独立于炎症的异常气道重塑的途径。测试这个
假设,De Marzio博士将开发一种新型的系统生物学方法,该方法结合了基因组学,生物统计学,
和网络医学。来自哮喘人群研究的RNA测序和临床数据将与
蛋白质相互作用网络至:1)确定哮喘中支气管收缩的机械遗传学特征
上皮并了解其在哮喘表型中的作用; 2)定义气道上皮细胞的作用
响应机械压缩的异质性; 3)确定介导的信号通路
压缩引起的气道重塑以发现候选治疗标记。这样,这个项目将
代表了关于哮喘机械基因组学的首次综合研究。内在的跨学科
该提议的性质使De Marzio博士具有独特的资格来追求这一研究方向。提议
研究将利用她的物理背景以及她在计算生物学和网络方面的经验
建模以了解机械力在哮喘中的致病作用。为了成功发展
这个项目,她将接受气道病理学和肺医学的其他培训,她将是
由由生物学家,网络科学家和肺科医生组成的杰出指导团队的支持。
德·马齐奥(De Marzio)博士的长期职业目标是在
基因组学,生物力学和网络科学。该奖项提供的资源结合了富人
Channing网络医学部的知识环境将使她处于有利的位置
过渡到独立并提交多个R01。 De Marzio博士的发现将为未来铺平道路
哮喘的机械药物的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margherita De Marzio其他文献
Margherita De Marzio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
PFKFB3介导的糖酵解通过诱导气道上皮细胞功能失调加重哮喘气道炎症和气道重塑的机制
- 批准号:82300041
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
NGF通过上调ASIC1a表达激活AMPK/FoxO3a信号通路促进气道上皮细胞自噬诱导支气管哮喘的机制研究
- 批准号:82360008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
外泌体介导肥大细胞类糜蛋白酶调控哮喘气道平滑肌增殖和机制研究
- 批准号:82370033
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CD207阳性树突状细胞在过敏性哮喘气道炎症中作用及机制研究
- 批准号:82370035
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Neuropilin-1活化肺2型固有淋巴样细胞促进肺哮喘发生的机制研究
- 批准号:32300727
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Lung resident Treg suppression of Th2 resident memory T cells in allergic asthma
过敏性哮喘中肺常驻 Treg 对 Th2 常驻记忆 T 细胞的抑制
- 批准号:
10664599 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Individualized Nutrition to Help Asthmatics Improve Lung Function and Energetics (INHALE)
个性化营养帮助哮喘患者改善肺功能和能量(INHALE)
- 批准号:
10724851 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Childhood Allergy and the NeOnatal Environment in St Louis (CANOE-STL) and the Impact of Wheezing Illnesses on Neurocognitive Development of Preschool Children
圣路易斯儿童过敏和新生儿环境 (CANOE-STL) 以及喘息疾病对学龄前儿童神经认知发展的影响
- 批准号:
10745142 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Genetic Dissection of the Pathophysiology of Polycystic Ovary Syndrome
多囊卵巢综合征病理生理学的基因剖析
- 批准号:
10739832 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Mechanistic Investigation of Gut Mycobiota in the Regulation of Lung Immunity and Disease
肠道菌群调节肺部免疫和疾病的机制研究
- 批准号:
10793853 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别: