Structure and Function of Non-Conventional Caveolins
非常规小窝蛋白的结构和功能
基本信息
- 批准号:10638902
- 负责人:
- 金额:$ 73.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdipose tissueBiochemicalBiogenesisBiologicalBiological AssayBiological ProcessBiophysicsCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemCaveolaeCaveolinsCell AdhesionCell Differentiation processCell membraneCell physiologyCell surfaceCellsCholesterolComplexCryoelectron MicroscopyCytoplasmDataDefectDevelopmentDiseaseElectron MicroscopyExhibitsFamilyFamily memberGeometryHeartHomeostasisHomoHumanIn VitroIntracellular TransportInvestigationKnowledgeLearningLinkLipidsLipodystrophyLungMalignant NeoplasmsMechanical StressMediatingMembraneMembrane BiologyMembrane ProteinsMetabolismModelingMoldsMolecularMorphologyMusMuscleMuscular DystrophiesMutationNatural SelectionsNaturePathway interactionsPhysiologicalPhysiologyPlayProcessPropertyProteinsProtomerResearch PersonnelResolutionRoleShapesSideSignal PathwaySignal TransductionStructureSurfaceSystemic diseaseTestingTissuesbasebiophysical propertiesbody systemcaveolin 1caveolin-2caveolin-3cell motilitycell typeflasksinsightmechanotransductionmembrane modelmolecular dynamicsparticleprotein functionpulmonary arterial hypertensionpulmonary functionsensortrafficking
项目摘要
Caveolins are a family of unusual membrane proteins that function as key regulators of the cardiovascular
system and metabolism. One of their major biological activities is to shape the plasma membrane to form
flask-shaped invaginations called caveolae. Defects in caveolins and caveolae have dramatic physiological
consequences and disrupt intracellular trafficking, signaling, lipid homeostasis, mechanosensing, and plasma
membrane integrity at the cellular level. How caveolins and caveolae regulate so many different cellular
functions has remained a mystery for nearly 30 years, in part due to the lack of information about the structure
of caveolins. Excitingly, the status quo recently changed. Using cryo-electron microscopy, we have now
determined the first high-resolution structure of the caveolin family member responsible for caveolae
biogenesis outside of muscle, caveolin-1 (CAV1). Consisting of 11 tightly packed protomers arranged in a
disc, the structure represents an oligomeric state of the protein that serves as the fundamental building block of
caveolae. It is thus now possible to begin to address how caveolae form and function at a mechanistic level.
Here, we propose to build on lessons learned from determining the structure of CAV1 to tackle another
ongoing conundrum in the field. Either as a consequence of disease-associated mutations or as a result of
natural selection, some caveolins are unable to generate caveolae on their own. Remarkably, these “non-
conventional” caveolins can still have profound effects on caveolae assembly and dynamics and even exert
distinct biological functions. How does this happen? To gain insight into this long-standing question, we
propose to compare and contrast the properties of CAV1 with caveolin-2 (CAV2), an evolutionarily conserved,
naturally occurring example of a caveolin that can only form caveolae in the presence of CAV1 and is required
for normal physiological function of the lung. Using a combination of structural, biochemical, biophysical,
computational, and cell biological assays, we will 1) determine how the unique structural features of CAV2
dictate its interactions with itself, CAV1, and other proteins and 2) study mechanisms used by caveolin
complexes to associate with and bend membranes and mediate plasma membrane homeostasis. These
studies will provide critical insights into how caveolins interact with themselves and one another to form the
building blocks of caveolae as well as how the distinct structural features of caveolin family members dictate
their biological functions by controlling their repertoire of interacting proteins and lipids. On a more
fundamental level, the proposed investigations will test new ideas about how proteins insert into membranes
and how this influences their ability to mold membrane morphology, composition, and function.
小窝蛋白是一个不寻常的膜蛋白的家族,充当心血管的关键调节剂
系统和代谢。他们的主要生物学活动之一是塑造质膜形成
烧瓶形的invaginations称为小菜。小窝蛋白和小窝的缺陷具有戏剧性的生理
后果和破坏细胞内贩运,信号传导,脂质稳态,机械感应和等离子体
细胞水平的膜完整性。小窝蛋白和小窝如何调节如此多种不同的细胞
功能一直是一个神秘的近30年,部分原因是缺乏有关结构的信息
小窝。令人兴奋的是,现状最近发生了变化。使用冷冻电子显微镜,我们现在有
确定负责小窝的小窝林家族成员的第一个高分辨率结构
在肌肉之外的生物发生,小窝蛋白-1(CAV1)。由11种紧密包装的代理组成
圆盘,结构代表蛋白质的低聚状态,作为蛋白质的基本构件
小屋。因此,现在可以开始解决小窝在机械水平上的形成和功能。
在这里,我们建议从确定CAV1的结构中学到的经验教训以解决另一个
该领域正在进行的难题。要么是由于疾病相关突变的结果
自然选择,一些小洞无法自行产生小窝。值得注意的是,这些“非 -
常规”小窝蛋白仍然会对小窝组装和动态产生深远的影响,甚至可以锻炼
不同的生物学功能。这是怎么发生的?为了深入了解这个长期存在的问题,我们
比较和对比Cav1与Caveolin-2(Cav2)的特性的建议,这是一种进化,构成的,
天然发生的小窝蛋白的例子,该caveolin只能在Cav1存在的情况下形成小窝,需要
对于肺的正常生理功能。结合结构,生化,生物物理,
计算和细胞生物学测定,我们将1)确定CAV2的独特结构特征如何
决定其与自身,CAV1和其他蛋白质的相互作用以及2)可爱素使用的研究机制
复合物与膜膜并弯曲并介导质膜稳态。这些
研究将提供有关小窝素方式与彼此相互作用以形成的关键见解
小屋的建筑块以及小窝林家庭成员的独特结构特征如何决定
它们的生物学功能通过控制其相互作用蛋白质和脂质的曲目。更多
基本层面,拟议的调查将测试有关蛋白质如何插入膜的新想法
以及这如何影响他们塑造膜形态,组成和功能的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne K Kenworthy其他文献
Anne K Kenworthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne K Kenworthy', 18)}}的其他基金
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10474445 - 财政年份:2020
- 资助金额:
$ 73.09万 - 项目类别:
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10029455 - 财政年份:2020
- 资助金额:
$ 73.09万 - 项目类别:
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10250522 - 财政年份:2020
- 资助金额:
$ 73.09万 - 项目类别:
Structural basis for caveolae assembly and function
小窝组装和功能的结构基础
- 批准号:
9925038 - 财政年份:2018
- 资助金额:
$ 73.09万 - 项目类别:
Roles of Cholesterol and Membrane Nanodomains in the Amyloidogenic Pathway
胆固醇和膜纳米结构域在淀粉样蛋白生成途径中的作用
- 批准号:
9333750 - 财政年份:2017
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
8532431 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
8843013 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
9925238 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
9403684 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
相似国自然基金
脂肪组织新型内分泌因子的鉴定及功能研究
- 批准号:82330023
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管周围脂肪组织TRPV1通道通过脂联素调控肥胖相关高血压的机制研究
- 批准号:82300500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
- 批准号:82370731
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL1/CXCR2信号轴上调Bcl-2促进筋膜定植巨噬细胞迁移在皮下脂肪组织原位再生中的机制研究
- 批准号:82360615
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Age-Dependent N-Glycosylation of Follicle-Stimulation Hormone in Gonadotropes
促性腺激素中卵泡刺激激素的年龄依赖性 N-糖基化
- 批准号:
10679254 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Stress response signaling as a metabolic sensor in reproduction
应激反应信号作为生殖中的代谢传感器
- 批准号:
10644353 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Mechanisms and therapeutic potential of blocking the mitochondrial Mg2+ channel Mrs2 in obesity and NAFLD
阻断线粒体 Mg2 通道 Mrs2 在肥胖和 NAFLD 中的机制和治疗潜力
- 批准号:
10679847 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
- 批准号:
10719544 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别: