Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
基本信息
- 批准号:10639668
- 负责人:
- 金额:$ 41.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdultAnatomyApoptosisBiological ProcessBone DiseasesCalcineurinCell CycleCell LineageCell membraneCellsCongenital AbnormalityDevelopmentDevelopmental BiologyDistalEctopic ExpressionExhibitsFibroblastsGenesGeneticGenetic EpistasisGenetic TranscriptionGrowthGrowth FactorHomeostasisHumanImageIn SituIndividualInjuryIonsKineticsLeadLinkMalignant NeoplasmsMeasurementMesenchymeModelingMolecularMutateMutationNatural regenerationNatureOrganOrgan SizeOutputPPP3CA genePatternPhasePhenotypePositioning AttributePotassium ChannelProcessRegenerative MedicineReporterReporter GenesResearchSecond Messenger SystemsShapesSignal TransductionSystemTestingTranscriptTransgenic OrganismsTransplantationVoltage-Gated Potassium ChannelZebrafishbioelectricitybiophysical propertiesblastemacandidate identificationcell behaviorexperimental studygain of functionhuman diseaseloss of functionmigrationmutantnovelorgan regenerationorgan repairpharmacologicprogenitorregenerativeresearch studyrestorationrestraintsingle-cell RNA sequencingskeletal regenerationsmall molecule inhibitorspatiotemporaltissue repairtranscriptome sequencingtranscriptomicstumorvoltage
项目摘要
PROJECT SUMMARY
Organs “know” when and how to stop growing to arrive at the correct size and shape. Disruption of organ size
control mechanisms leads to congenital abnormalities, poor organ homeostasis and tissue repair, and tumors.
Exemplifying this fundamental mystery, adult zebrafish fins perfectly regenerate to their original size and shape
regardless of injury extent. Therefore, zebrafish fin regeneration is a compelling and tractable system to
interrogate “organ scaling” mechanisms. Bioelectricity, or ion flows across cell membranes, is long-associated
with both organ size control and regeneration. However, links between ion signaling and their effectors to
specific cell behaviors determining organ size are limited. Perturbed ion signaling, notably by elevated voltage-
gated K+ channel activity and inhibited Ca2+-dependent calcineurin signaling, leads to dramatic overgrowth of
regenerating zebrafish fins. A distal fibroblast-lineage pool of "niche" cells within the fin's regenerative
blastema sustains fin outgrowth. The niche progressively depletes as outgrowth slows, likely by net re-
differentiation to a non-growth promoting state. We recently discovered the classic longfint2 mutant phenotype
is caused by ectopic expression of the Kcnh2a potassium channel within the fibroblast/niche lineage. Ectopic
Kcnh2a disrupts orderly niche depletion, thereby prolonging the outgrowth period. Kcnh2a likely blocks Ca2+-
calcineurin signaling with both acting uniquely during late stages of regeneration. We made a Ca2+ responsive
GCaMP6s transgenic reporter line and found distal fibroblast / niche cells exhibit dynamic Ca2+ fluxes. Our
single cell transcriptomics identified candidate upstream voltage-gated Ca2+ channels. We mutated the genes
encoding each channel, generating the first recessive model of dramatically elongated fins. We now
hypothesize niche-specific Ca2+ signaling, modulated by a cadre of Ca2+ channels, activates calcineurin to
promote niche-to-mesenchyme state transitions. We will pursue three Specific Aims to test this model and
identify mechanisms linking ion signaling to cell behaviors restoring fin size: 1) Characterize spatiotemporal
cytosolic Ca2+ dynamics and calcineurin activity in wildtype and long-finned zebrafish, 2) Determine how
voltage-gated Ca2+ channels modulate regenerating fin Ca2+ dynamics and fin outgrowth, and 3) Determine
how Ca2+ dynamics and calcineurin promote cell behaviors for fin growth cessation. Our proposed research will
associate voltage-gated Ca2+ channel-modulated intracellular Ca2+ dynamics, downstream calcineurin signaling,
and a novel “niche” state transition towards answering the classic mystery of robust organ scaling during fin
regeneration. Our study's broader impacts include identifying conceptual and mechanistic links of bioelectricity
to specific molecules and cell behaviors that determine organ size and form. Finally, studying robust adult
zebrafish skeletal regeneration will inform regenerative medicine approaches for human bone disease.
项目摘要
器官“知道”何时以及如何停止生长以达到正确的尺寸和形状。器官尺寸的破坏
控制机制导致先天性异常,器官稳态和组织修复以及肿瘤。
举例说明这个基本的谜团,成人斑马鱼鳍完美地再生到其原始尺寸和形状
无论受伤程度如何。因此,斑马鱼鳍的再生是一个引人入胜且可拖延的系统
询问“器官缩放”机制。生物电性或离子流跨细胞机制,长期相关
具有器官尺寸控制和再生。但是,离子信号及其效果之间的联系与
确定组织尺寸的特定细胞行为有限。受扰动的离子信号传导,特别是电压升高 -
封闭的K+通道活性并抑制Ca2+依赖性钙调神经蛋白信号传导,导致急剧过度生长
再生斑马鱼鳍。鳍片再生中的“小众”细胞的远端成纤维细胞池池
Blastema维持鳍的产物。利基市场逐渐消耗的生长会减慢,可能是由于净重新降低
与非增长促进状态的区分。我们最近发现了经典的longfint2突变表型
是由成纤维细胞/小裂谱系中KCNH2A钾通道的异位表达引起的。异位
KCNH2A破坏了有序的利基部署,从而延长了生长期。 KCNH2A可能会阻止Ca2+ -
钙调神经蛋白信号传导在再生后期均具有独特的作用。我们做了一个CA2+响应迅速
GCAMP6S转基因报告基因线,发现盘状成纤维细胞 /利基细胞暴露了动态CA2+通量。我们的
单细胞转录组学确定了候选上游电压门控Ca2+通道。我们突变了基因
编码每个通道,生成第一个隐性模型的巨大伸长鳍模型。我们现在
假设由Ca2+通道的干部调制的小众Ca2+信号传导将钙调神经酶激活至
促进利基至间质状态过渡。我们将追求三个特定目标来测试此模型,并
识别将离子信号传导与细胞行为联系起来的机制,以恢复FIN大小:1)表征时空的特征
Wildtype和长期固定斑马鱼的胞质Ca2+动力学和钙调神经酶活性,2)确定如何
电压门控的Ca2+通道调节再生鳍CA2+动力学和鳍片的生长,3)确定
Ca2+动力学和钙调神经酶如何促进鳍生长戒烟的细胞行为。我们提出的研究将
相关电压门控Ca2+通道调节的细胞内Ca2+动力学,下游钙调神经磷酸酶信号,
以及一个小说的“利基”状态过渡,以回答鳍期间稳健器官缩放的经典奥秘
再生。我们的研究的更广泛影响包括识别生物电性的概念和机理联系
针对确定器官大小和形式的特定分子和细胞行为。最后,学习健壮的成人
斑马鱼骨骼再生将为人骨病的再生医学方法提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KRYN STANKUNAS其他文献
KRYN STANKUNAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KRYN STANKUNAS', 18)}}的其他基金
Revisiting Polycomb Repression in Appendage Regeneration
重新审视附肢再生中的多梳抑制
- 批准号:
10742697 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
10115761 - 财政年份:2018
- 资助金额:
$ 41.08万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
9895229 - 财政年份:2018
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8310027 - 财政年份:2010
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8101217 - 财政年份:2010
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
8007510 - 财政年份:2010
- 资助金额:
$ 41.08万 - 项目类别:
Chromatin Remodeling in Cardiovascular Development
心血管发育中的染色质重塑
- 批准号:
7531134 - 财政年份:2008
- 资助金额:
$ 41.08万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Corticofugal contributions to auditory perceptual learning
皮质对听觉感知学习的贡献
- 批准号:
10749249 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
DISARMing the immunological barriers to regeneration in mammals
解除哺乳动物再生的免疫屏障
- 批准号:
10564255 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Genetic screen to define the regulation of beta-hemolysin toxin expression in Streptococcus agalactiae
基因筛选以确定无乳链球菌中 β-溶血素毒素表达的调节
- 批准号:
10731405 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别: