Using automated speech processing to improve identification of risk for hospitalizations and emergency department visits in home healthcare
使用自动语音处理来改进家庭医疗保健中住院和急诊室就诊的风险识别
基本信息
- 批准号:10638400
- 负责人:
- 金额:$ 68.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAddressCare given by nursesCaregiver supportCaringCharacteristicsClinicalCommunicationDataData ScienceData SetData SourcesDatabasesDementiaDetectionDeteriorationEdemaElderlyElectronic Health RecordEmergency department visitEngineeringEventFamilyFormal caregiverFrequenciesFutureGenetic TranscriptionGoalsHealth Care ResearchHealth Care VisitHeart failureHome Care ServicesHome Health Care AgenciesHospitalizationHourHumanInterventionKnowledgeLinguisticsMachine LearningMeasurementMethodsModelingNatural Language ProcessingNursesPatient CarePatient riskPatientsPerformanceResearchRiskRisk FactorsRisk ReductionSeriesStandardizationSuicideSystemTechniquesUnited StatesVariantVisiting NurseVoiceWorkacceptability and feasibilitycare episodeclinical careclinically significantdata streamsfeature selectionimprovedimproved outcomelexicalmedication nonadherencemodel developmentpreventrisk predictionrisk prediction modelspeech processingtrendverbal
项目摘要
PROJECT SUMMARY
Every year, about 11,000 home healthcare (HHC) agencies across the United States provide care to more
than 5 million older adults. Currently, about one in three HHC patients are hospitalized or visit an emergency
department (ED) and up to 40% of these events are preventable with appropriate and timely care. However,
these numbers have not improved over the last decade, despite national and local quality improvement efforts.
Recent advances in a subfield of data science—automated speech processing—have unlocked an
untapped rich data stream that can improve risk identification by analyzing nurse-patient verbal
communication. The proposed study brings together an interdisciplinary team of experts in home healthcare
nursing, automated speech processing, natural language processing, and risk model development to explore
whether automated speech processing can improve timely identification of patients at risk in home healthcare
and potentially reduce their hospitalizations and ED visits.
Specifically, the aims of this study are: Aim 1: Refine and finalize an automated speech processing system
to identify hospitalization and ED visit risk factors in patient-nurse verbal communications. Aim 2: Explore to
what extent data extracted from patient-nurse communications can improve risk prediction for hospitalizations
and ED visits, when compared against the risk model based on electronic health record data only.
This study will build a first-of-a-kind hospitalization and ED visit risk model that automatically incorporates
data from patient-nurse verbal communication. In future work, this risk model can be integrated into home
healthcare clinical workflows to trigger timely and personalized alerts about concerning patient trends, which
will in turn activate appropriate and timely care to prevent avoidable hospitalizations and ED visits from HHC.
项目摘要
每年,美国大约有11,000个家庭医疗保健(HHC)机构为更多
超过500万老年人。目前,大约三分之一的HHC患者住院或访问紧急情况
部门(ED)和多达40%的事件可以通过适当和及时的照顾来预防。然而,
在过去的十年中,这些数字没有得到改善,目的地是国家和地方质量的改进工作。
数据科学子领域的最新进展(自动语音处理)已解锁
未开发的丰富数据流,可以通过分析护士患者口头来改善风险识别
沟通。拟议的研究将家庭医疗保健专家跨学科团队汇集在一起
护士,自动语音处理,自然语言处理和风险模型开发以探索
自动语音处理是否可以改善家庭医疗保健风险患者的及时确定
并有可能减少他们的住院和ED访问。
具体而言,这项研究的目的是:目标1:完善和最终确定自动语音处理系统
确定住院和ED访问患者言语通信中的危险因素。目标2:探索
从患者沟通中提取的数据何种程度可以改善住院的风险预测
与ED访问相比,仅基于电子健康记录数据进行比较。
这项研究将建立首个住院和ED访问风险模型,该模型自动合并
来自患者和言语交流的数据。在将来的工作中,可以将这种风险模型集成到家庭中
医疗保健临床工作流程以触发有关患者趋势的及时和个性化警报,
反过来,将激活适当和及时的护理,以防止HHC可避免的住院和ED访问。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia B. Hirschberg其他文献
Julia B. Hirschberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving glycemic control among underserved patients with insulin-treated type 2 diabetes through nurse-led, app-based behavioral intervention
通过护士主导、基于应用程序的行为干预,改善接受胰岛素治疗的 2 型糖尿病患者的血糖控制
- 批准号:
10591769 - 财政年份:2023
- 资助金额:
$ 68.58万 - 项目类别:
Understanding the relationship between nurse staffing and outcomes: impact of individual nurse education, expertise, and effort level on individual patient outcomes
了解护士人员配置与结果之间的关系:护士个体教育、专业知识和努力水平对个体患者结果的影响
- 批准号:
10642570 - 财政年份:2023
- 资助金额:
$ 68.58万 - 项目类别:
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 68.58万 - 项目类别:
Enhancing Nurse Practitioner Primary Care Delivery to Address Social Determinants of Health and Reduce Health Disparities: A mixed-methods national study
加强执业护士初级保健服务,以解决健康的社会决定因素并减少健康差异:一项混合方法的国家研究
- 批准号:
10591788 - 财政年份:2023
- 资助金额:
$ 68.58万 - 项目类别:
Building Resilience In SKilled nursing facilities (BRISK): Development and Pilot Testing of a Dyadic Intervention for Psychological Distress in Post-Acute Skilled Nursing Care
建立熟练护理设施的复原力(BRISK):针对急性后熟练护理中心理困扰的二元干预措施的开发和试点测试
- 批准号:
10739279 - 财政年份:2023
- 资助金额:
$ 68.58万 - 项目类别: