Defining roles of nitroTyrosine in desease via genetic code expansion

通过遗传密码扩展定义硝基酪氨酸在疾病中的作用

基本信息

  • 批准号:
    10641726
  • 负责人:
  • 金额:
    $ 28.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-05 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The role of reactive nitrogen species in over eighty human diseases including atherosclerosis, cancer, neurodegeneration, and stroke is well demonstrated by the accumulation of the biomarker 3-nitrotyrosine (nitroTyr). NitroTyr is not randomly distributed across the proteome as might be expected, but rather is found on specific tyrosines on specific proteins. In response to these observations, the PI has greatly advanced this field by developing genetic code expansion (GCE) technologies enabling site-specific incorporation of nitroTyr into recombinant proteins in bacteria and mammalian cells. Collaborative work using these tools has now firmly established that nitroTyr-proteins are causative agents in amyotrophic lateral sclerosis, atherosclerosis, and cancer, supporting our central hypothesis that nitroTyr-modified proteins are key players in human disease and that understanding the basis for their accumulation and removal, as well as their mechanistic roles in pathology will lead to new opportunities for therapeutic intervention. Further support comes from the breakthrough discovery of a denitrase enzyme that is a tumor suppressor: the “D2” pseudo-phosphatase domain of the protein tyrosine phosphatase receptor T (PTPRTD2) is a tyrosine denitrase that when knocked out promotes cancer growth. This upends the paradigm that nitroTyr-proteins are an unregulated by-product of stress and makes possible a new research strategy that should accelerate progress. Instead of identifying specific diseases and associated nitroTyr modified proteins one at a time, under the hypothesis that this denitrase represents a new enzyme family involved in regulating the impact of nitroTyr, characterizing these denitrases and the breadth of their substrates should speed the identification of physiologically relevant nitroTyr modifications and also provide new avenues to define their impact. This will be done through pursuing two aims that encompass: (1) defining the denitrase substrate scope and the structure-function relationships critical for substrate recognition, and (2) converting denitrases and their substrates into traps and inhibitors which will be used to identify denitrase/substrate pairs and aid studies of their physiological/pathological impacts in cells. Preliminary work demonstrating feasibility has already identified two additional denitrase substrates, which have altered function upon site-specific nitration. The proposed work to define what nitroTyr proteins are substrates of denitrases will also help resolve why nitrated proteins accumulate in disease, and for every case in which it is discovered that a denitrase/nitroTyr-substrate pair contribute to pathology development, the mapping of that process will open up a new avenue for therapeutic intervention. As (i) the developer of existing nitroTyr GCE technologies, (ii) an enzymologist and (iii) acting director of the Unnatural Protein Facility, the PI is superbly qualified to lead this work and all needed facilities are available. Furthermore, key collaborators are already engaged who bring the expertise in structural biology and cell biology needed for the breadth of work proposed.
活性氮在八十多种人类疾病中的作用,包括动脉粥样硬化、癌症、 生物标志物 3-硝基酪氨酸的积累充分证明了神经退行性疾病和中风 (硝基酪氨酸)。硝基酪氨酸并不像预期的那样随机分布在蛋白质组中,而是在 根据这些观察结果,PI 极大地推进了这一领域的发展。 通过开发遗传密码扩展(GCE)技术,能够将硝基酪氨酸定点整合到 使用这些工具在细菌和哺乳动物细胞中进行重组蛋白的合作现已牢固。 确定硝基酪蛋白是肌萎缩侧索硬化症、动脉粥样硬化和 癌症,支持我们的中心假设,即硝基酪氨酸修饰蛋白是人类疾病和疾病的关键参与者 了解它们积累和清除的基础,以及它们在病理学中的机制作用 突破将为治疗干预带来新的机会。 发现一种肿瘤抑制因子的脱硝酶:蛋白质的“D2”假磷酸酶结构域 酪氨酸磷酸酶受体 T (PTPRTD2) 是一种酪氨酸脱硝酶,被敲除后会促进癌症 这颠覆了硝基酪蛋白是压力不受调节的副产品的范式。 可能会出现一种新的研究策略,该策略应该加速进展,而不是识别特定的疾病和疾病。 相关的硝基酪氨酸每次修饰一个蛋白质,假设这种脱硝酶代表了一种新的 参与调节硝基酪氨酸影响的酶家族,描述了这些脱硝酶的特征以及 它们的底物应加速生理相关硝基酪氨酸修饰的鉴定,并提供 这将通过追求两个目标来实现,其中包括:(1) 定义其影响。 脱硝酶底物关系范围和对底物识别至关重要的结构功能,以及 (2) 将脱硝酶及其底物转化为陷阱和抑制剂,用于识别 脱硝酶/底物对并帮助研究它们对细胞的生理/病理影响。 证明可行性已经确定了两种额外的脱硝酶底物,它们具有功能 确定哪些硝基酪蛋白是脱硝酶底物的拟议工作将基于位点特异性硝化。 还有助于解决硝化蛋白在疾病中积聚的原因,并且对于每一个发现的案例 脱硝酶/硝基酪氨酸底物有助于病理学发展,该过程的一对映射将打开 作为 (i) 现有 nitroTyr GCE 技术的开发者,(ii) 开辟一条治疗干预的新途径。 作为酶学家和 (iii) 非自然蛋白质设施的代理主任,PI 非常有资格领导这项工作 而且所有需要的设施都已准备就绪,而且主要合作者已经参与其中,带来了这些成果。 拟议工作范围所需的结构生物学和细胞生物学专业知识。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetically Encoded Protein Tyrosine Nitration in Mammalian Cells.
  • DOI:
    10.1021/acschembio.9b00371
  • 发表时间:
    2019-06-21
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Porter JJ;Jang HS;Van Fossen EM;Nguyen DP;Willi TS;Cooley RB;Mehl RA
  • 通讯作者:
    Mehl RA
Update Notice: Site-specific Incorporation of Phosphoserine into Recombinant Proteins in Escherichia coli.
更新通知:磷酸丝氨酸位点特异性掺入大肠杆菌重组蛋白中。
  • DOI:
    10.21769/bioprotoc.4860
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhu,Phillip;Mehl,RyanA;Cooley,RichardB
  • 通讯作者:
    Cooley,RichardB
Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications.
Creating a Selective Nanobody Against 3-Nitrotyrosine Containing Proteins.
  • DOI:
    10.3389/fchem.2022.835229
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Van Fossen EM;Grutzius S;Ruby CE;Mourich DV;Cebra C;Bracha S;Karplus PA;Cooley RB;Mehl RA
  • 通讯作者:
    Mehl RA
Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved Nitro-Tyrosine tRNA Synthetase.
  • DOI:
    10.1016/j.jmb.2020.06.014
  • 发表时间:
    2020-07-24
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Beyer JN;Hosseinzadeh P;Gottfried-Lee I;Van Fossen EM;Zhu P;Bednar RM;Karplus PA;Mehl RA;Cooley RB
  • 通讯作者:
    Cooley RB
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RYAN A MEHL其他文献

RYAN A MEHL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RYAN A MEHL', 18)}}的其他基金

The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
  • 批准号:
    10558725
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
  • 批准号:
    10799462
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
  • 批准号:
    10335009
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
Development of an improved core technology for efficient genetic code expansion in biomedical research
开发改进的核心技术,用于生物医学研究中有效的遗传密码扩展
  • 批准号:
    10093096
  • 财政年份:
    2019
  • 资助金额:
    $ 28.84万
  • 项目类别:
Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
  • 批准号:
    10439859
  • 财政年份:
    2015
  • 资助金额:
    $ 28.84万
  • 项目类别:
Defining Roles Of NitroTyrosine In Disease Via Genetic Code Expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
  • 批准号:
    8865130
  • 财政年份:
    2015
  • 资助金额:
    $ 28.84万
  • 项目类别:
Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
  • 批准号:
    10299521
  • 财政年份:
    2015
  • 资助金额:
    $ 28.84万
  • 项目类别:
Defining Roles Of NitroTyrosine In Disease Via Genetic Code Expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
  • 批准号:
    9105425
  • 财政年份:
    2015
  • 资助金额:
    $ 28.84万
  • 项目类别:

相似国自然基金

利用Tia1(p.P362L)基因编辑兔对肌萎缩侧索硬化症的性别差异性病理学分子机制的研究
  • 批准号:
    32000359
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of Sarm1 in TBI-accentuated C9orf72 Frontotemporal Dementia
Sarm1 在 TBI 加重的 C9orf72 额颞叶痴呆中的作用
  • 批准号:
    10646932
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
  • 批准号:
    10746565
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
In vivo characterization of the molecular drivers of biomolecular condensate formation in TDP-43 neuropathology
TDP-43 神经病理学中生物分子凝聚物形成的分子驱动因素的体内表征
  • 批准号:
    10698165
  • 财政年份:
    2022
  • 资助金额:
    $ 28.84万
  • 项目类别:
Frontotemporal dementia and related disorders: transcriptomic profiling, biomarker discovery, and mechanistic insight
额颞叶痴呆及相关疾病:转录组分析、生物标志物发现和机制洞察
  • 批准号:
    10597677
  • 财政年份:
    2021
  • 资助金额:
    $ 28.84万
  • 项目类别:
Role of oligomeric TDP-43 aggregate intermediates in ALS and frontotemporal dementia
寡聚 TDP-43 聚合中间体在 ALS 和额颞叶痴呆中的作用
  • 批准号:
    10553253
  • 财政年份:
    2020
  • 资助金额:
    $ 28.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了